|
import torch.nn as nn |
|
|
|
|
|
|
|
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors |
|
|
|
def make_master_params(model_params): |
|
""" |
|
Copy model parameters into a inflated tensor of full-precision parameters. |
|
""" |
|
master_params = _flatten_dense_tensors( |
|
[param.detach().float() for param in model_params] |
|
) |
|
master_params = nn.Parameter(master_params) |
|
master_params.requires_grad = True |
|
return [master_params] |
|
|
|
|
|
def unflatten_master_params(model_params, master_params): |
|
""" |
|
Unflatten the master parameters to look like model_params. |
|
""" |
|
return _unflatten_dense_tensors(master_params[0].detach(), model_params) |
|
|
|
|
|
def model_params_to_master_params(model_params, master_params): |
|
""" |
|
Copy the model parameter data into the master parameters. |
|
""" |
|
master_params[0].detach().copy_( |
|
_flatten_dense_tensors([param.detach().float() for param in model_params]) |
|
) |
|
|
|
|
|
def master_params_to_model_params(model_params, master_params): |
|
""" |
|
Copy the master parameter data back into the model parameters. |
|
""" |
|
for param, master_param in zip( |
|
model_params, _unflatten_dense_tensors(master_params[0].detach(), model_params) |
|
): |
|
param.detach().copy_(master_param) |
|
|
|
|
|
def model_grads_to_master_grads(model_params, master_params): |
|
""" |
|
Copy the gradients from the model parameters into the master parameters |
|
from make_master_params(). |
|
""" |
|
master_params[0].grad = _flatten_dense_tensors( |
|
[param.grad.data.detach().float() for param in model_params] |
|
) |
|
|
|
|
|
def zero_grad(model_params): |
|
for param in model_params: |
|
if param.grad is not None: |
|
if param.grad.grad_fn is not None: |
|
param.grad.detach_() |
|
else: |
|
param.grad.requires_grad_(False) |
|
param.grad.zero_() |
|
|
|
|
|
|
|
from torch.optim.lr_scheduler import LambdaLR |
|
|
|
class LinearWarmupLRScheduler(LambdaLR): |
|
def __init__(self, optimizer, warmup_steps, last_epoch=-1): |
|
self.warmup_steps = warmup_steps |
|
super(LinearWarmupLRScheduler, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch) |
|
|
|
def lr_lambda(self, current_step): |
|
if current_step < self.warmup_steps: |
|
return float(current_step + 1) / self.warmup_steps |
|
return 1.0 |
|
|