|
from typing import * |
|
import copy |
|
import torch |
|
from torch.utils.data import DataLoader |
|
import numpy as np |
|
from easydict import EasyDict as edict |
|
import utils3d.torch |
|
|
|
from ..basic import BasicTrainer |
|
from ...representations import MeshExtractResult |
|
from ...renderers import MeshRenderer |
|
from ...modules.sparse import SparseTensor |
|
from ...utils.loss_utils import l1_loss, smooth_l1_loss, ssim, lpips |
|
from ...utils.data_utils import recursive_to_device |
|
|
|
|
|
class SLatVaeMeshDecoderTrainer(BasicTrainer): |
|
""" |
|
Trainer for structured latent VAE Mesh Decoder. |
|
|
|
Args: |
|
models (dict[str, nn.Module]): Models to train. |
|
dataset (torch.utils.data.Dataset): Dataset. |
|
output_dir (str): Output directory. |
|
load_dir (str): Load directory. |
|
step (int): Step to load. |
|
batch_size (int): Batch size. |
|
batch_size_per_gpu (int): Batch size per GPU. If specified, batch_size will be ignored. |
|
batch_split (int): Split batch with gradient accumulation. |
|
max_steps (int): Max steps. |
|
optimizer (dict): Optimizer config. |
|
lr_scheduler (dict): Learning rate scheduler config. |
|
elastic (dict): Elastic memory management config. |
|
grad_clip (float or dict): Gradient clip config. |
|
ema_rate (float or list): Exponential moving average rates. |
|
fp16_mode (str): FP16 mode. |
|
- None: No FP16. |
|
- 'inflat_all': Hold a inflated fp32 master param for all params. |
|
- 'amp': Automatic mixed precision. |
|
fp16_scale_growth (float): Scale growth for FP16 gradient backpropagation. |
|
finetune_ckpt (dict): Finetune checkpoint. |
|
log_param_stats (bool): Log parameter stats. |
|
i_print (int): Print interval. |
|
i_log (int): Log interval. |
|
i_sample (int): Sample interval. |
|
i_save (int): Save interval. |
|
i_ddpcheck (int): DDP check interval. |
|
|
|
loss_type (str): Loss type. Can be 'l1', 'l2' |
|
lambda_ssim (float): SSIM loss weight. |
|
lambda_lpips (float): LPIPS loss weight. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
*args, |
|
depth_loss_type: str = 'l1', |
|
lambda_depth: int = 1, |
|
lambda_ssim: float = 0.2, |
|
lambda_lpips: float = 0.2, |
|
lambda_tsdf: float = 0.01, |
|
lambda_color: float = 0.1, |
|
**kwargs |
|
): |
|
super().__init__(*args, **kwargs) |
|
self.depth_loss_type = depth_loss_type |
|
self.lambda_depth = lambda_depth |
|
self.lambda_ssim = lambda_ssim |
|
self.lambda_lpips = lambda_lpips |
|
self.lambda_tsdf = lambda_tsdf |
|
self.lambda_color = lambda_color |
|
self.use_color = self.lambda_color > 0 |
|
|
|
self._init_renderer() |
|
|
|
def _init_renderer(self): |
|
rendering_options = {"near" : 1, |
|
"far" : 3} |
|
self.renderer = MeshRenderer(rendering_options, device=self.device) |
|
|
|
def _render_batch(self, reps: List[MeshExtractResult], extrinsics: torch.Tensor, intrinsics: torch.Tensor, |
|
return_types=['mask', 'normal', 'depth']) -> Dict[str, torch.Tensor]: |
|
""" |
|
Render a batch of representations. |
|
|
|
Args: |
|
reps: The dictionary of lists of representations. |
|
extrinsics: The [N x 4 x 4] tensor of extrinsics. |
|
intrinsics: The [N x 3 x 3] tensor of intrinsics. |
|
return_types: vary in ['mask', 'normal', 'depth', 'normal_map', 'color'] |
|
|
|
Returns: |
|
a dict with |
|
reg_loss : [N] tensor of regularization losses |
|
mask : [N x 1 x H x W] tensor of rendered masks |
|
normal : [N x 3 x H x W] tensor of rendered normals |
|
depth : [N x 1 x H x W] tensor of rendered depths |
|
""" |
|
ret = {k : [] for k in return_types} |
|
for i, rep in enumerate(reps): |
|
out_dict = self.renderer.render(rep, extrinsics[i], intrinsics[i], return_types=return_types) |
|
for k in out_dict: |
|
ret[k].append(out_dict[k][None] if k in ['mask', 'depth'] else out_dict[k]) |
|
for k in ret: |
|
ret[k] = torch.stack(ret[k]) |
|
return ret |
|
|
|
@staticmethod |
|
def _tsdf_reg_loss(rep: MeshExtractResult, depth_map: torch.Tensor, extrinsics: torch.Tensor, intrinsics: torch.Tensor) -> torch.Tensor: |
|
|
|
with torch.no_grad(): |
|
|
|
projected_pts, pts_depth = utils3d.torch.project_cv(extrinsics=extrinsics, intrinsics=intrinsics, points=rep.tsdf_v) |
|
projected_pts = (projected_pts - 0.5) * 2.0 |
|
depth_map_res = depth_map.shape[1] |
|
gt_depth = torch.nn.functional.grid_sample(depth_map.reshape(1, 1, depth_map_res, depth_map_res), |
|
projected_pts.reshape(1, 1, -1, 2), mode='bilinear', padding_mode='border', align_corners=True) |
|
pseudo_sdf = gt_depth.flatten() - pts_depth.flatten() |
|
|
|
delta = 1 / rep.res * 3.0 |
|
trunc_mask = pseudo_sdf > -delta |
|
|
|
|
|
gt_tsdf = pseudo_sdf[trunc_mask] |
|
tsdf = rep.tsdf_s.flatten()[trunc_mask] |
|
gt_tsdf = torch.clamp(gt_tsdf, -delta, delta) |
|
return torch.mean((tsdf - gt_tsdf) ** 2) |
|
|
|
def _calc_tsdf_loss(self, reps : list[MeshExtractResult], depth_maps, extrinsics, intrinsics) -> torch.Tensor: |
|
tsdf_loss = 0.0 |
|
for i, rep in enumerate(reps): |
|
tsdf_loss += self._tsdf_reg_loss(rep, depth_maps[i], extrinsics[i], intrinsics[i]) |
|
return tsdf_loss / len(reps) |
|
|
|
@torch.no_grad() |
|
def _flip_normal(self, normal: torch.Tensor, extrinsics: torch.Tensor, intrinsics: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Flip normal to align with camera. |
|
""" |
|
normal = normal * 2.0 - 1.0 |
|
R = torch.zeros_like(extrinsics) |
|
R[:, :3, :3] = extrinsics[:, :3, :3] |
|
R[:, 3, 3] = 1.0 |
|
view_dir = utils3d.torch.unproject_cv( |
|
utils3d.torch.image_uv(*normal.shape[-2:], device=self.device).reshape(1, -1, 2), |
|
torch.ones(*normal.shape[-2:], device=self.device).reshape(1, -1), |
|
R, intrinsics |
|
).reshape(-1, *normal.shape[-2:], 3).permute(0, 3, 1, 2) |
|
unflip = (normal * view_dir).sum(1, keepdim=True) < 0 |
|
normal *= unflip * 2.0 - 1.0 |
|
return (normal + 1.0) / 2.0 |
|
|
|
def _perceptual_loss(self, gt: torch.Tensor, pred: torch.Tensor, name: str) -> Dict[str, torch.Tensor]: |
|
""" |
|
Combination of L1, SSIM, and LPIPS loss. |
|
""" |
|
if gt.shape[1] != 3: |
|
assert gt.shape[-1] == 3 |
|
gt = gt.permute(0, 3, 1, 2) |
|
if pred.shape[1] != 3: |
|
assert pred.shape[-1] == 3 |
|
pred = pred.permute(0, 3, 1, 2) |
|
terms = { |
|
f"{name}_loss" : l1_loss(gt, pred), |
|
f"{name}_loss_ssim" : 1 - ssim(gt, pred), |
|
f"{name}_loss_lpips" : lpips(gt, pred) |
|
} |
|
terms[f"{name}_loss_perceptual"] = terms[f"{name}_loss"] + terms[f"{name}_loss_ssim"] * self.lambda_ssim + terms[f"{name}_loss_lpips"] * self.lambda_lpips |
|
return terms |
|
|
|
def geometry_losses( |
|
self, |
|
reps: List[MeshExtractResult], |
|
mesh: List[Dict], |
|
normal_map: torch.Tensor, |
|
extrinsics: torch.Tensor, |
|
intrinsics: torch.Tensor, |
|
): |
|
with torch.no_grad(): |
|
gt_meshes = [] |
|
for i in range(len(reps)): |
|
gt_mesh = MeshExtractResult(mesh[i]['vertices'].to(self.device), mesh[i]['faces'].to(self.device)) |
|
gt_meshes.append(gt_mesh) |
|
target = self._render_batch(gt_meshes, extrinsics, intrinsics, return_types=['mask', 'depth', 'normal']) |
|
target['normal'] = self._flip_normal(target['normal'], extrinsics, intrinsics) |
|
|
|
terms = edict(geo_loss = 0.0) |
|
if self.lambda_tsdf > 0: |
|
tsdf_loss = self._calc_tsdf_loss(reps, target['depth'], extrinsics, intrinsics) |
|
terms['tsdf_loss'] = tsdf_loss |
|
terms['geo_loss'] += tsdf_loss * self.lambda_tsdf |
|
|
|
return_types = ['mask', 'depth', 'normal', 'normal_map'] if self.use_color else ['mask', 'depth', 'normal'] |
|
buffer = self._render_batch(reps, extrinsics, intrinsics, return_types=return_types) |
|
|
|
success_mask = torch.tensor([rep.success for rep in reps], device=self.device) |
|
if success_mask.sum() != 0: |
|
for k, v in buffer.items(): |
|
buffer[k] = v[success_mask] |
|
for k, v in target.items(): |
|
target[k] = v[success_mask] |
|
|
|
terms['mask_loss'] = l1_loss(buffer['mask'], target['mask']) |
|
if self.depth_loss_type == 'l1': |
|
terms['depth_loss'] = l1_loss(buffer['depth'] * target['mask'], target['depth'] * target['mask']) |
|
elif self.depth_loss_type == 'smooth_l1': |
|
terms['depth_loss'] = smooth_l1_loss(buffer['depth'] * target['mask'], target['depth'] * target['mask'], beta=1.0 / (2 * reps[0].res)) |
|
else: |
|
raise ValueError(f"Unsupported depth loss type: {self.depth_loss_type}") |
|
terms.update(self._perceptual_loss(buffer['normal'] * target['mask'], target['normal'] * target['mask'], 'normal')) |
|
terms['geo_loss'] = terms['geo_loss'] + terms['mask_loss'] + terms['depth_loss'] * self.lambda_depth + terms['normal_loss_perceptual'] |
|
if self.use_color and normal_map is not None: |
|
terms.update(self._perceptual_loss(normal_map[success_mask], buffer['normal_map'], 'normal_map')) |
|
terms['geo_loss'] = terms['geo_loss'] + terms['normal_map_loss_perceptual'] * self.lambda_color |
|
|
|
return terms |
|
|
|
def color_losses(self, reps, image, alpha, extrinsics, intrinsics): |
|
terms = edict(color_loss = torch.tensor(0.0, device=self.device)) |
|
buffer = self._render_batch(reps, extrinsics, intrinsics, return_types=['color']) |
|
success_mask = torch.tensor([rep.success for rep in reps], device=self.device) |
|
if success_mask.sum() != 0: |
|
terms.update(self._perceptual_loss((image * alpha[:, None])[success_mask], buffer['color'][success_mask], 'color')) |
|
terms['color_loss'] = terms['color_loss'] + terms['color_loss_perceptual'] * self.lambda_color |
|
return terms |
|
|
|
def training_losses( |
|
self, |
|
latents: SparseTensor, |
|
image: torch.Tensor, |
|
alpha: torch.Tensor, |
|
mesh: List[Dict], |
|
extrinsics: torch.Tensor, |
|
intrinsics: torch.Tensor, |
|
normal_map: torch.Tensor = None, |
|
) -> Tuple[Dict, Dict]: |
|
""" |
|
Compute training losses. |
|
|
|
Args: |
|
latents: The [N x * x C] sparse latents |
|
image: The [N x 3 x H x W] tensor of images. |
|
alpha: The [N x H x W] tensor of alpha channels. |
|
mesh: The list of dictionaries of meshes. |
|
extrinsics: The [N x 4 x 4] tensor of extrinsics. |
|
intrinsics: The [N x 3 x 3] tensor of intrinsics. |
|
|
|
Returns: |
|
a dict with the key "loss" containing a scalar tensor. |
|
may also contain other keys for different terms. |
|
""" |
|
reps = self.training_models['decoder'](latents) |
|
self.renderer.rendering_options.resolution = image.shape[-1] |
|
|
|
terms = edict(loss = 0.0, rec = 0.0) |
|
|
|
terms['reg_loss'] = sum([rep.reg_loss for rep in reps]) / len(reps) |
|
terms['loss'] = terms['loss'] + terms['reg_loss'] |
|
|
|
geo_terms = self.geometry_losses(reps, mesh, normal_map, extrinsics, intrinsics) |
|
terms.update(geo_terms) |
|
terms['loss'] = terms['loss'] + terms['geo_loss'] |
|
|
|
if self.use_color: |
|
color_terms = self.color_losses(reps, image, alpha, extrinsics, intrinsics) |
|
terms.update(color_terms) |
|
terms['loss'] = terms['loss'] + terms['color_loss'] |
|
|
|
return terms, {} |
|
|
|
@torch.no_grad() |
|
def run_snapshot( |
|
self, |
|
num_samples: int, |
|
batch_size: int, |
|
verbose: bool = False, |
|
) -> Dict: |
|
dataloader = DataLoader( |
|
copy.deepcopy(self.dataset), |
|
batch_size=batch_size, |
|
shuffle=True, |
|
num_workers=0, |
|
collate_fn=self.dataset.collate_fn if hasattr(self.dataset, 'collate_fn') else None, |
|
) |
|
|
|
|
|
ret_dict = {} |
|
gt_images = [] |
|
gt_normal_maps = [] |
|
gt_meshes = [] |
|
exts = [] |
|
ints = [] |
|
reps = [] |
|
for i in range(0, num_samples, batch_size): |
|
batch = min(batch_size, num_samples - i) |
|
data = next(iter(dataloader)) |
|
args = recursive_to_device(data, 'cuda') |
|
gt_images.append(args['image'] * args['alpha'][:, None]) |
|
if self.use_color and 'normal_map' in data: |
|
gt_normal_maps.append(args['normal_map']) |
|
gt_meshes.extend(args['mesh']) |
|
exts.append(args['extrinsics']) |
|
ints.append(args['intrinsics']) |
|
reps.extend(self.models['decoder'](args['latents'])) |
|
gt_images = torch.cat(gt_images, dim=0) |
|
ret_dict.update({f'gt_image': {'value': gt_images, 'type': 'image'}}) |
|
if self.use_color and gt_normal_maps: |
|
gt_normal_maps = torch.cat(gt_normal_maps, dim=0) |
|
ret_dict.update({f'gt_normal_map': {'value': gt_normal_maps, 'type': 'image'}}) |
|
|
|
|
|
exts = torch.cat(exts, dim=0) |
|
ints = torch.cat(ints, dim=0) |
|
self.renderer.rendering_options.bg_color = (0, 0, 0) |
|
self.renderer.rendering_options.resolution = gt_images.shape[-1] |
|
gt_render_results = self._render_batch([ |
|
MeshExtractResult(vertices=mesh['vertices'].to(self.device), faces=mesh['faces'].to(self.device)) |
|
for mesh in gt_meshes |
|
], exts, ints, return_types=['normal']) |
|
ret_dict.update({f'gt_normal': {'value': self._flip_normal(gt_render_results['normal'], exts, ints), 'type': 'image'}}) |
|
return_types = ['normal'] |
|
if self.use_color: |
|
return_types.append('color') |
|
if 'normal_map' in data: |
|
return_types.append('normal_map') |
|
render_results = self._render_batch(reps, exts, ints, return_types=return_types) |
|
ret_dict.update({f'rec_normal': {'value': render_results['normal'], 'type': 'image'}}) |
|
if 'color' in return_types: |
|
ret_dict.update({f'rec_image': {'value': render_results['color'], 'type': 'image'}}) |
|
if 'normal_map' in return_types: |
|
ret_dict.update({f'rec_normal_map': {'value': render_results['normal_map'], 'type': 'image'}}) |
|
|
|
|
|
self.renderer.rendering_options.resolution = 512 |
|
|
|
yaws = [0, np.pi / 2, np.pi, 3 * np.pi / 2] |
|
yaws_offset = np.random.uniform(-np.pi / 4, np.pi / 4) |
|
yaws = [y + yaws_offset for y in yaws] |
|
pitch = [np.random.uniform(-np.pi / 4, np.pi / 4) for _ in range(4)] |
|
|
|
|
|
multiview_normals = [] |
|
multiview_normal_maps = [] |
|
miltiview_images = [] |
|
for yaw, pitch in zip(yaws, pitch): |
|
orig = torch.tensor([ |
|
np.sin(yaw) * np.cos(pitch), |
|
np.cos(yaw) * np.cos(pitch), |
|
np.sin(pitch), |
|
]).float().cuda() * 2 |
|
fov = torch.deg2rad(torch.tensor(30)).cuda() |
|
extrinsics = utils3d.torch.extrinsics_look_at(orig, torch.tensor([0, 0, 0]).float().cuda(), torch.tensor([0, 0, 1]).float().cuda()) |
|
intrinsics = utils3d.torch.intrinsics_from_fov_xy(fov, fov) |
|
extrinsics = extrinsics.unsqueeze(0).expand(num_samples, -1, -1) |
|
intrinsics = intrinsics.unsqueeze(0).expand(num_samples, -1, -1) |
|
render_results = self._render_batch(reps, extrinsics, intrinsics, return_types=return_types) |
|
multiview_normals.append(render_results['normal']) |
|
if 'color' in return_types: |
|
miltiview_images.append(render_results['color']) |
|
if 'normal_map' in return_types: |
|
multiview_normal_maps.append(render_results['normal_map']) |
|
|
|
|
|
multiview_normals = torch.cat([ |
|
torch.cat(multiview_normals[:2], dim=-2), |
|
torch.cat(multiview_normals[2:], dim=-2), |
|
], dim=-1) |
|
ret_dict.update({f'multiview_normal': {'value': multiview_normals, 'type': 'image'}}) |
|
if 'color' in return_types: |
|
miltiview_images = torch.cat([ |
|
torch.cat(miltiview_images[:2], dim=-2), |
|
torch.cat(miltiview_images[2:], dim=-2), |
|
], dim=-1) |
|
ret_dict.update({f'multiview_image': {'value': miltiview_images, 'type': 'image'}}) |
|
if 'normal_map' in return_types: |
|
multiview_normal_maps = torch.cat([ |
|
torch.cat(multiview_normal_maps[:2], dim=-2), |
|
torch.cat(multiview_normal_maps[2:], dim=-2), |
|
], dim=-1) |
|
ret_dict.update({f'multiview_normal_map': {'value': multiview_normal_maps, 'type': 'image'}}) |
|
|
|
return ret_dict |
|
|