# pre-process ScanNet 2D data # note: depends on the sens file reader from ScanNet: # https://github.com/ScanNet/ScanNet/blob/master/SensReader/python/SensorData.py # if export_label_images flag is on: # - depends on https://github.com/ScanNet/ScanNet/tree/master/BenchmarkScripts/util.py # - also assumes that label images are unzipped as scene*/label*/*.png # expected file structure: # - prepare_2d_data.py # - https://github.com/ScanNet/ScanNet/tree/master/BenchmarkScripts/util.py # - https://github.com/ScanNet/ScanNet/blob/master/SensReader/python/SensorData.py # # example usage: # python prepare_2d_data.py --scannet_path data/scannetv2 --output_path data/scannetv2_images --export_label_images import argparse import os, sys import numpy as np import skimage.transform as sktf import imageio from SensorData import SensorData import util # try: # from prepare_2d_data.SensorData import SensorData # except: # print('Failed to import SensorData (from ScanNet code toolbox)') # sys.exit(-1) # try: # from prepare_2d_data import util # except: # print('Failed to import ScanNet code toolbox util') # sys.exit(-1) # params parser = argparse.ArgumentParser() parser.add_argument('--scannet_path', required=True, help='path to scannet data') parser.add_argument('--output_path', required=True, help='where to output 2d data') parser.add_argument('--export_label_images', dest='export_label_images', action='store_true') parser.add_argument('--label_type', default='label-filt', help='which labels (label or label-filt)') parser.add_argument('--frame_skip', type=int, default=20, help='export every nth frame') parser.add_argument('--label_map_file', default='scannet-preprocess/meta_data/scannetv2-labels.combined.tsv', help='path to scannetv2-labels.combined.tsv (required for label export only)') parser.add_argument('--output_image_width', type=int, default=640, help='export image width') parser.add_argument('--output_image_height', type=int, default=480, help='export image height') parser.set_defaults(export_label_images=False) opt = parser.parse_args() if opt.export_label_images: assert opt.label_map_file != '' print(opt) def print_error(message): sys.stderr.write('ERROR: ' + str(message) + '\n') sys.exit(-1) # from https://github.com/ScanNet/ScanNet/tree/master/BenchmarkScripts/2d_helpers/convert_scannet_label_image.py def map_label_image(image, label_mapping): mapped = np.copy(image) for k, v in label_mapping.iteritems(): mapped[image == k] = v return mapped.astype(np.uint8) def main(): if not os.path.exists(opt.output_path): os.makedirs(opt.output_path) label_mapping = None if opt.export_label_images: label_map = util.read_label_mapping(opt.label_map_file, label_from='id', label_to='nyu40id') scenes = [d for d in os.listdir(opt.scannet_path) if os.path.isdir(os.path.join(opt.scannet_path, d))] print('Found %d scenes' % len(scenes)) for i in range(0,len(scenes)): if scenes[i] != 'scene0000_00': continue sens_file = os.path.join(opt.scannet_path, scenes[i], scenes[i] + '.sens') label_path = os.path.join(opt.scannet_path, scenes[i], opt.label_type) if opt.export_label_images and not os.path.isdir(label_path): print_error('Error: using export_label_images option but label path %s does not exist' % label_path) output_color_path = os.path.join(opt.output_path, scenes[i], 'color') if not os.path.isdir(output_color_path): os.makedirs(output_color_path) output_depth_path = os.path.join(opt.output_path, scenes[i], 'depth') if not os.path.isdir(output_depth_path): os.makedirs(output_depth_path) output_pose_path = os.path.join(opt.output_path, scenes[i], 'pose') if not os.path.isdir(output_pose_path): os.makedirs(output_pose_path) output_label_path = os.path.join(opt.output_path, scenes[i], 'label') if opt.export_label_images and not os.path.isdir(output_label_path): os.makedirs(output_label_path) output_intrinsics_path = os.path.join(opt.output_path, scenes[i], 'intrinsics') if opt.export_label_images and not os.path.isdir(output_label_path): os.makedirs(output_label_path) # read and export sys.stdout.write('\r[ %d | %d ] %s\tloading...' % ((i + 1), len(scenes), scenes[i])) sys.stdout.flush() sd = SensorData(sens_file) sys.stdout.write('\r[ %d | %d ] %s\texporting...' % ((i + 1), len(scenes), scenes[i])) sys.stdout.flush() sd.export_color_images(output_color_path, image_size=[opt.output_image_height, opt.output_image_width], frame_skip=opt.frame_skip) sd.export_depth_images(output_depth_path, image_size=[opt.output_image_height, opt.output_image_width], frame_skip=opt.frame_skip) sd.export_poses(output_pose_path, frame_skip=opt.frame_skip) sd.export_intrinsics(output_intrinsics_path) if opt.export_label_images: for f in range(0, len(sd.frames), opt.frame_skip): label_file = os.path.join(label_path, str(f) + '.png') image = np.array(imageio.imread(label_file)) image = sktf.resize(image, [opt.output_image_height, opt.output_image_width], order=0, preserve_range=True) mapped_image = map_label_image(image, label_map) imageio.imwrite(os.path.join(output_label_path, str(f) + '.png'), mapped_image) print('') if __name__ == '__main__': main()