moarafa97 commited on
Commit
7aff3d7
·
verified ·
1 Parent(s): f03a58b

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +99 -38
src/streamlit_app.py CHANGED
@@ -1,40 +1,101 @@
1
- import altair as alt
2
- import numpy as np
3
- import pandas as pd
 
 
 
 
 
 
 
4
  import streamlit as st
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- """
7
- # Welcome to Streamlit!
8
-
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
-
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
-
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
-
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))
 
1
+ import os
2
+ os.environ["STREAMLIT_WATCHER_TYPE"] = "none"
3
+
4
+ import torch
5
+ if hasattr(torch, "classes"):
6
+ try:
7
+ torch.classes.__path__ = []
8
+ except Exception:
9
+ pass
10
+
11
  import streamlit as st
12
+ import tempfile
13
+ import requests
14
+ import subprocess
15
+ import torchaudio
16
+ from speechbrain.pretrained.interfaces import foreign_class
17
+
18
+
19
+
20
+ # Load model using custom interface
21
+ @st.cache_resource
22
+ def load_model():
23
+ try:
24
+ os.environ["SPEECHBRAIN_CACHE"] = os.path.join(os.getcwd(), "models")
25
+ return foreign_class(
26
+ source="Jzuluaga/accent-id-commonaccent_xlsr-en-english",
27
+ pymodule_file="custom_interface.py",
28
+ classname="CustomEncoderWav2vec2Classifier"
29
+ )
30
+ except Exception as e:
31
+ st.error(f"❌ Model failed to load: {e}")
32
+ raise
33
+
34
+ # Download video from a public URL
35
+ def download_video(url, temp_dir):
36
+ video_path = os.path.join(temp_dir, "video.mp4")
37
+ r = requests.get(url, stream=True)
38
+ with open(video_path, 'wb') as f:
39
+ for chunk in r.iter_content(chunk_size=1024):
40
+ f.write(chunk)
41
+ return video_path
42
+
43
+ import imageio_ffmpeg
44
+
45
+ def extract_audio(video_path, temp_dir):
46
+ audio_path = os.path.join(temp_dir, "audio.wav")
47
+ ffmpeg_path = imageio_ffmpeg.get_ffmpeg_exe() # Get bundled FFmpeg path
48
+
49
+ command = [
50
+ ffmpeg_path,
51
+ "-y", "-i", video_path,
52
+ "-vn", "-acodec", "pcm_s16le", "-ar", "16000", "-ac", "1",
53
+ audio_path
54
+ ]
55
+
56
+ try:
57
+ subprocess.run(command, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
58
+ except subprocess.CalledProcessError as e:
59
+ raise RuntimeError(f"FFmpeg failed: {e}")
60
+ return audio_path
61
+
62
+ def classify_accent(audio_path, model):
63
+ out_prob, score, index, label = model.classify_file(audio_path)
64
+ return label, score * 100, out_prob
65
+
66
+ # Streamlit UI
67
+ st.set_page_config(page_title="Accent Classifier", layout="centered")
68
+ st.title("English Accent Detection")
69
+
70
+ st.markdown("Paste a link or upload a video to analyze the speaker's English accent.")
71
+
72
+ video_url = st.text_input("Paste a direct link to a video (MP4 URL)")
73
+ st.markdown("**OR**")
74
+ uploaded_file = st.file_uploader("Upload a video file (MP4 format)", type=["mp4"])
75
+
76
+
77
+
78
+ if uploaded_file or video_url:
79
+ with st.spinner("Processing video..."):
80
+ try:
81
+ with tempfile.TemporaryDirectory() as temp_dir:
82
+ # Get video path from upload or URL
83
+ if uploaded_file:
84
+ video_path = os.path.join(temp_dir, uploaded_file.name)
85
+ with open(video_path, 'wb') as f:
86
+ f.write(uploaded_file.read())
87
+ else:
88
+ video_path = download_video(video_url, temp_dir)
89
+
90
+ audio_path = extract_audio(video_path, temp_dir)
91
+ model = load_model()
92
+ label, confidence, probs = classify_accent(audio_path, model)
93
+
94
+ # Ensure proper formatting
95
+ label = label if isinstance(label, str) else label[0]
96
+ st.success(f"Detected Accent: **{label}**")
97
+ st.info(f"Confidence Score: **{confidence.item():.1f}%**")
98
 
99
+
100
+ except Exception as e:
101
+ st.error(f"❌ Error: {str(e)}")