import os import random import numpy as np import spaces import torch from diffusers import FluxPipeline import gradio as gr # Access the Hugging Face token from environment variables hf_token = os.getenv("HF_TOKEN") if hf_token is None: raise ValueError("Hugging Face token is not set. Please set the HF_TOKEN environment variable.") # Check if GPU is available if torch.cuda.is_available(): device = "cuda" print("Using GPU") else: device = "cpu" print("Using CPU") MAX_SEED = np.iinfo(np.int32).max CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1" # Initialize the pipeline and download the model pipe = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, use_auth_token=hf_token # Use the token from the environment variable ) pipe.to(device) # Enable memory optimizations pipe.enable_attention_slicing() # Define the image generation function @spaces.GPU(duration=180) def generate_image(prompt, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt, progress=gr.Progress(track_tqdm=True)): if seed == 0: seed = random.randint(1, MAX_SEED) generator = torch.Generator().manual_seed(seed) with torch.inference_mode(): output = pipe( prompt=prompt, num_inference_steps=num_inference_steps, height=height, width=width, guidance_scale=guidance_scale, generator=generator, num_images_per_prompt=num_images_per_prompt ).images return output # Create the Gradio interface examples = [ ["Black forest cake spelling out the words 'I love you', tasty, food photography, dynamic shot"], ] css = ''' .gradio-container{max-width: 1000px !important} h1{text-align:center} ''' with gr.Blocks(css=css) as demo: with gr.Row(): with gr.Column(): gr.HTML( """

FLUX.1-dev Image Generator

Welcome to the FLUX.1-dev Image Generator! This tool transforms your creative ideas into stunning visual artwork using state-of-the-art AI technology. Simply describe the image you imagine, adjust the settings to your preference, and let our model bring your vision to life. Explore endless possibilities and let your creativity soar!

""" ) with gr.Group(): with gr.Column(): prompt = gr.Textbox(label="Prompt", info="Describe the image you want", placeholder="A cat...") run_button = gr.Button("Run") result = gr.Gallery(label="Generated AI Images", elem_id="gallery") with gr.Accordion("Advanced options", open=False): with gr.Row(): num_inference_steps = gr.Slider(label="Number of Inference Steps", info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", minimum=1, maximum=50, value=25, step=1) guidance_scale = gr.Slider(label="Guidance Scale", info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", minimum=0.0, maximum=7.0, value=3.5, step=0.1) with gr.Row(): width = gr.Slider(label="Width", info="Width of the Image", minimum=256, maximum=1024, step=32, value=1024) height = gr.Slider(label="Height", info="Height of the Image", minimum=256, maximum=1024, step=32, value=1024) with gr.Row(): seed = gr.Slider(value=42, minimum=0, maximum=MAX_SEED, step=1, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one") num_images_per_prompt = gr.Slider(label="Images Per Prompt", info="Number of Images to generate with the settings", minimum=1, maximum=4, step=1, value=2) gr.Examples( examples=examples, fn=generate_image, inputs=[prompt, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt], outputs=[result], cache_examples=CACHE_EXAMPLES ) gr.on( triggers=[ prompt.submit, run_button.click, ], fn=generate_image, inputs=[prompt, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt], outputs=[result], ) demo.queue().launch(share=False)