File size: 14,183 Bytes
2160235 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
import type {
AutomaticSpeechRecognitionPipeline,
CausalLMOutputWithPast,
GPT2Tokenizer,
LlamaForCausalLM,
PreTrainedModel,
StoppingCriteriaList,
} from '@huggingface/transformers'
import type { Device, DType } from '@xsai-transformers/shared/types'
import type { GenerateOptions } from 'kokoro-js'
import type {
WorkerMessageEventError,
WorkerMessageEventInfo,
WorkerMessageEventOutput,
WorkerMessageEventProgress,
WorkerMessageEventSetVoiceResponse,
WorkerMessageEventStatus,
} from '../types/worker'
import {
// VAD
AutoModel,
AutoModelForCausalLM,
// LLM
AutoTokenizer,
InterruptableStoppingCriteria,
pipeline,
// Speech recognition
Tensor,
TextStreamer,
} from '@huggingface/transformers'
import { isWebGPUSupported } from 'gpuu/webgpu'
import { KokoroTTS, TextSplitterStream } from 'kokoro-js'
import {
EXIT_THRESHOLD,
INPUT_SAMPLE_RATE,
MAX_BUFFER_DURATION,
MAX_NUM_PREV_BUFFERS,
MIN_SILENCE_DURATION_SAMPLES,
MIN_SPEECH_DURATION_SAMPLES,
SPEECH_PAD_SAMPLES,
SPEECH_THRESHOLD,
} from '../constants'
interface Message {
role: 'system' | 'user' | 'assistant'
content: string
}
type Voices = GenerateOptions['voice']
export type PretrainedConfig = NonNullable<Parameters<typeof AutoModel.from_pretrained>[1]>['config']
const whisperDtypeMap: Record<Device, DType> = {
webgpu: {
encoder_model: 'fp32',
decoder_model_merged: 'fp32',
},
wasm: {
encoder_model: 'fp32',
decoder_model_merged: 'q8',
},
}
const model_id = 'onnx-community/Kokoro-82M-v1.0-ONNX'
let voice: Voices | undefined
let silero_vad: PreTrainedModel
let transcriber: AutomaticSpeechRecognitionPipeline
let tts: KokoroTTS
const SYSTEM_MESSAGE: Message = {
role: 'system',
content:
'You\'re a helpful and conversational voice assistant. Keep your responses short, clear, and casual.',
}
let messages: Message[] = [SYSTEM_MESSAGE]
let past_key_values_cache: any = null
let stopping_criteria: InterruptableStoppingCriteria | null = null
// Global audio buffer to store incoming audio
const BUFFER = new Float32Array(MAX_BUFFER_DURATION * INPUT_SAMPLE_RATE)
let bufferPointer = 0
// Initial state for VAD
const sr = new Tensor('int64', [INPUT_SAMPLE_RATE], [])
let state = new Tensor('float32', new Float32Array(2 * 1 * 128), [2, 1, 128])
// Whether we are in the process of adding audio to the buffer
let isRecording = false
let isPlaying = false // new flag
let tokenizer: GPT2Tokenizer
let llm: LlamaForCausalLM
const prevBuffers: Float32Array[] = []
export async function loadModels() {
tts = await KokoroTTS.from_pretrained(model_id, {
dtype: 'fp32',
device: 'webgpu',
})
const device = 'webgpu'
globalThis.postMessage({ type: 'info', data: { message: `Using device: "${device}"` } } satisfies WorkerMessageEventInfo)
globalThis.postMessage({ type: 'info', data: { message: 'Loading models...', duration: 'until_next' } } satisfies WorkerMessageEventInfo)
// Load models
silero_vad = await AutoModel.from_pretrained(
'onnx-community/silero-vad',
{
config: { model_type: 'custom' } as PretrainedConfig,
dtype: 'fp32', // Full-precision
progress_callback: progress => globalThis.postMessage({ type: 'progress', data: { message: progress } } satisfies WorkerMessageEventProgress),
},
).catch((error: Error) => {
globalThis.postMessage({ type: 'error', data: { error, message: error.message } } satisfies WorkerMessageEventError<Error>)
throw error
})
transcriber = await pipeline(
'automatic-speech-recognition',
'onnx-community/whisper-base', // or "onnx-community/moonshine-base-ONNX",
{
device,
dtype: whisperDtypeMap[device as keyof typeof whisperDtypeMap],
progress_callback: progress => globalThis.postMessage({ type: 'progress', data: { message: progress } } satisfies WorkerMessageEventProgress),
},
).catch((error: Error) => {
globalThis.postMessage({ type: 'error', data: { error, message: error.message } } satisfies WorkerMessageEventError<Error>)
throw error
})
await transcriber(new Float32Array(INPUT_SAMPLE_RATE)) // Compile shaders
llm = await AutoModelForCausalLM.from_pretrained(
'HuggingFaceTB/SmolLM2-1.7B-Instruct',
{
dtype: await isWebGPUSupported() ? 'q4f16' : 'int8',
device: await isWebGPUSupported() ? 'webgpu' : 'wasm',
progress_callback: progress => globalThis.postMessage({ type: 'progress', data: { message: progress } } satisfies WorkerMessageEventProgress),
},
).catch((error: Error) => {
globalThis.postMessage({ type: 'error', data: { error, message: error.message } } satisfies WorkerMessageEventError<Error>)
throw error
})
tokenizer = await AutoTokenizer.from_pretrained(
'HuggingFaceTB/SmolLM2-1.7B-Instruct',
).catch((error: Error) => {
globalThis.postMessage({ type: 'error', data: { error, message: error.message } } satisfies WorkerMessageEventError<Error>)
throw error
})
await llm.generate({ ...tokenizer('x'), max_new_tokens: 1 }) // Compile shaders
globalThis.postMessage({
type: 'status',
data: {
status: 'ready',
message: 'Ready!',
voices: tts.voices,
},
} as WorkerMessageEventStatus)
}
loadModels()
/**
* Perform Voice Activity Detection (VAD)
* @param buffer The new audio buffer
* @returns `true` if the buffer is speech, `false` otherwise.
*/
async function vad(buffer?: Float32Array): Promise<boolean> {
if (!buffer) {
// Possibly closed or interrupted
return false
}
const input = new Tensor('float32', buffer, [1, buffer.length])
const { stateN, output } = await silero_vad({ input, sr, state })
state = stateN // Update state
const isSpeech = output.data[0]
// Use heuristics to determine if the buffer is speech or not
return (
// Case 1: We are above the threshold (definitely speech)
isSpeech > SPEECH_THRESHOLD
// Case 2: We are in the process of recording, and the probability is above the negative (exit) threshold
|| (isRecording && isSpeech >= EXIT_THRESHOLD)
)
}
interface SpeechData {
start: number
end: number
duration: number
}
type BatchEncodingItem = number[] | number[][] | Tensor
/**
* Holds the output of the tokenizer's call function.
*/
interface BatchEncoding {
/**
* List of token ids to be fed to a model.
*/
input_ids: BatchEncodingItem
/**
* List of indices specifying which tokens should be attended to by the model.
*/
attention_mask: BatchEncodingItem
/**
* List of token type ids to be fed to a model.
*/
token_type_ids?: BatchEncodingItem
}
/**
* Transcribe the audio buffer
* @param buffer The audio buffer
* @param _data Additional data
*/
async function speechToSpeech(buffer: Float32Array, _data: SpeechData): Promise<void> {
isPlaying = true
// 1. Transcribe the audio from the user
const result = await transcriber(buffer)
const text = (result as { text: string }).text.trim()
if (['', '[BLANK_AUDIO]'].includes(text)) {
// If the transcription is empty or a blank audio, we skip the rest of the processing
return
}
messages.push({ role: 'user', content: text })
// Set up text-to-speech streaming
const splitter = new TextSplitterStream()
const stream = tts!.stream(splitter, { voice });
(async () => {
for await (const { text, audio } of stream) {
globalThis.postMessage({ type: 'output', data: { text, result: audio } } satisfies WorkerMessageEventOutput)
}
})()
// 2. Generate a response using the LLM
const inputs = tokenizer.apply_chat_template(messages, {
add_generation_prompt: true,
return_dict: true,
}) as BatchEncoding
const streamer = new TextStreamer(tokenizer, {
skip_prompt: true,
skip_special_tokens: true,
callback_function: (text: string) => {
splitter.push(text)
},
token_callback_function: () => {},
})
stopping_criteria = new InterruptableStoppingCriteria()
type GenerationFunctionParameters = Parameters<typeof llm.generate>[0] & Record<string, any>
const generatedRes = await llm.generate({
...inputs,
past_key_values: past_key_values_cache,
do_sample: false, // TODO: do_sample: true is bugged (invalid data location on top-k sample)
max_new_tokens: 1024,
streamer,
stopping_criteria: stopping_criteria as unknown as StoppingCriteriaList,
return_dict_in_generate: true,
} as GenerationFunctionParameters)
const { past_key_values, sequences } = generatedRes as CausalLMOutputWithPast & { sequences: Tensor }
past_key_values_cache = past_key_values
// Finally, close the stream to signal that no more text will be added.
splitter.close()
const decoded = tokenizer.batch_decode(
// TODO: fix null as any
sequences.slice(null, [(inputs.input_ids as Tensor).dims[1], null as any]),
{ skip_special_tokens: true },
)
messages.push({ role: 'assistant', content: decoded[0] })
}
// Track the number of samples after the last speech chunk
let postSpeechSamples = 0
function resetAfterRecording(offset = 0): void {
globalThis.postMessage({
type: 'status',
data: {
status: 'recording_end',
message: 'Transcribing...',
duration: 'until_next',
},
} satisfies WorkerMessageEventStatus)
BUFFER.fill(0, offset)
bufferPointer = offset
isRecording = false
postSpeechSamples = 0
}
function dispatchForTranscriptionAndResetAudioBuffer(overflow?: Float32Array): void {
// Get start and end time of the speech segment, minus the padding
const now = Date.now()
const end
= now - ((postSpeechSamples + SPEECH_PAD_SAMPLES) / INPUT_SAMPLE_RATE) * 1000
const start = end - (bufferPointer / INPUT_SAMPLE_RATE) * 1000
const duration = end - start
const overflowLength = overflow?.length ?? 0
// Send the audio buffer to the worker
const buffer = BUFFER.slice(0, bufferPointer + SPEECH_PAD_SAMPLES)
const prevLength = prevBuffers.reduce((acc, b) => acc + b.length, 0)
const paddedBuffer = new Float32Array(prevLength + buffer.length)
let offset = 0
for (const prev of prevBuffers) {
paddedBuffer.set(prev, offset)
offset += prev.length
}
paddedBuffer.set(buffer, offset)
speechToSpeech(paddedBuffer, { start, end, duration })
// Set overflow (if present) and reset the rest of the audio buffer
if (overflow) {
BUFFER.set(overflow, 0)
}
resetAfterRecording(overflowLength)
}
globalThis.onmessage = async (event: MessageEvent) => {
const { type, buffer } = event.data
// refuse new audio while playing back
if (type === 'audio' && isPlaying)
return
switch (type) {
case 'start_call': {
const name = tts!.voices[voice ?? 'af_heart']?.name ?? 'Heart'
greet(`Hey there, my name is ${name}! How can I help you today?`)
return
}
case 'end_call':
messages = [SYSTEM_MESSAGE]
past_key_values_cache = null
break
case 'interrupt':
stopping_criteria?.interrupt()
return
case 'set_voice':
voice = event.data.voice
globalThis.postMessage({
type: 'set_voice_response',
data: {
ok: true,
},
} satisfies WorkerMessageEventSetVoiceResponse)
return
case 'playback_ended':
isPlaying = false
return
}
const wasRecording = isRecording // Save current state
const isSpeech = await vad(buffer)
if (!wasRecording && !isSpeech) {
// We are not recording, and the buffer is not speech,
// so we will probably discard the buffer. So, we insert
// into a FIFO queue with maximum size of PREV_BUFFER_SIZE
if (prevBuffers.length >= MAX_NUM_PREV_BUFFERS) {
// If the queue is full, we discard the oldest buffer
prevBuffers.shift()
}
prevBuffers.push(buffer)
return
}
const remaining = BUFFER.length - bufferPointer
if (buffer.length >= remaining) {
// The buffer is larger than (or equal to) the remaining space in the global buffer,
// so we perform transcription and copy the overflow to the global buffer
BUFFER.set(buffer.subarray(0, remaining), bufferPointer)
bufferPointer += remaining
// Dispatch the audio buffer
const overflow = buffer.subarray(remaining)
dispatchForTranscriptionAndResetAudioBuffer(overflow)
return
}
else {
// The buffer is smaller than the remaining space in the global buffer,
// so we copy it to the global buffer
BUFFER.set(buffer, bufferPointer)
bufferPointer += buffer.length
}
if (isSpeech) {
if (!isRecording) {
// Indicate start of recording
globalThis.postMessage({
type: 'status',
data: {
status: 'recording_start',
message: 'Listening...',
duration: 'until_next',
},
} satisfies WorkerMessageEventStatus)
}
// Start or continue recording
isRecording = true
postSpeechSamples = 0 // Reset the post-speech samples
return
}
postSpeechSamples += buffer.length
// At this point we're confident that we were recording (wasRecording === true), but the latest buffer is not speech.
// So, we check whether we have reached the end of the current audio chunk.
if (postSpeechSamples < MIN_SILENCE_DURATION_SAMPLES) {
// There was a short pause, but not long enough to consider the end of a speech chunk
// (e.g., the speaker took a breath), so we continue recording
return
}
if (bufferPointer < MIN_SPEECH_DURATION_SAMPLES) {
// The entire buffer (including the new chunk) is smaller than the minimum
// duration of a speech chunk, so we can safely discard the buffer.
resetAfterRecording()
return
}
dispatchForTranscriptionAndResetAudioBuffer()
}
function greet(text: string): void {
isPlaying = true
const splitter = new TextSplitterStream()
const stream = tts!.stream(splitter, { voice });
(async () => {
for await (const { text: chunkText, audio } of stream) {
globalThis.postMessage({ type: 'output', data: { text: chunkText, result: audio } } satisfies WorkerMessageEventOutput)
}
})()
splitter.push(text)
splitter.close()
messages.push({ role: 'assistant', content: text })
}
|