Spaces:
Sleeping
Sleeping
from transformers import BlipProcessor, BlipForQuestionAnswering | |
import torch | |
import gradio as gr | |
from PIL import Image | |
# Load the processor and model | |
processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base") | |
model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base") | |
# Set device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
def vqa_answer(image, question): | |
# Preprocess the inputs | |
inputs = processor(image, question, return_tensors="pt").to(device) | |
# Generate the answer | |
with torch.no_grad(): | |
generated_ids = model.generate(**inputs) | |
answer = processor.decode(generated_ids[0], skip_special_tokens=True) | |
return answer | |
# Define the input components | |
image_input = gr.components.Image(type="pil", label="Upload an Image") | |
question_input = gr.components.Textbox(lines=1, placeholder="Enter your question here...", label="Question") | |
# Define the output component | |
answer_output = gr.components.Textbox(label="Answer") | |
# Create the interface | |
iface = gr.Interface( | |
fn=vqa_answer, | |
inputs=[image_input, question_input], | |
outputs=answer_output, | |
title="Visual Question Answering App", | |
description="Ask a question about the uploaded image.", | |
article="This app uses the BLIP model to answer questions about images." | |
) | |
# Launch the app | |
iface.launch(share=True) |