|
import gradio as gr |
|
from transformers import DetrImageProcessor, DetrForObjectDetection |
|
import torch |
|
from PIL import Image, ImageDraw |
|
|
|
|
|
model_name = "cmarkea/detr-layout-detection" |
|
processor = DetrImageProcessor.from_pretrained(model_name) |
|
model = DetrForObjectDetection.from_pretrained(model_name) |
|
|
|
def detect_layout(image): |
|
inputs = processor(images=image, return_tensors="pt") |
|
outputs = model(**inputs) |
|
target_sizes = torch.tensor([image.size[::-1]]) |
|
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.7)[0] |
|
|
|
draw = ImageDraw.Draw(image) |
|
labels = [] |
|
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): |
|
box = [round(i, 2) for i in box.tolist()] |
|
draw.rectangle(box, outline="red", width=2) |
|
label_name = model.config.id2label[label.item()] |
|
draw.text((box[0] + 4, box[1]), f"{label_name} ({round(score.item(), 2)})", fill="red") |
|
labels.append({"label": label_name, "score": round(score.item(), 2), "box": box}) |
|
|
|
return image, labels |
|
|
|
iface = gr.Interface( |
|
fn=detect_layout, |
|
inputs=gr.Image(type="pil"), |
|
outputs=[gr.Image(type="pil"), gr.JSON()], |
|
title="Image to Figma Layers (with DETR)", |
|
description="Upload a PNG or JPEG UI image to detect editable layers using a layout-aware DETR model." |
|
) |
|
|
|
iface.launch() |
|
|