import gradio as gr from transformers import DetrImageProcessor, DetrForObjectDetection import torch from PIL import Image, ImageDraw # Load the DETR layout model model_name = "cmarkea/detr-layout-detection" processor = DetrImageProcessor.from_pretrained(model_name) model = DetrForObjectDetection.from_pretrained(model_name) def detect_layout(image): inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) target_sizes = torch.tensor([image.size[::-1]]) # H x W results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.7)[0] draw = ImageDraw.Draw(image) labels = [] for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): box = [round(i, 2) for i in box.tolist()] draw.rectangle(box, outline="red", width=2) label_name = model.config.id2label[label.item()] draw.text((box[0] + 4, box[1]), f"{label_name} ({round(score.item(), 2)})", fill="red") labels.append({"label": label_name, "score": round(score.item(), 2), "box": box}) return image, labels iface = gr.Interface( fn=detect_layout, inputs=gr.Image(type="pil"), outputs=[gr.Image(type="pil"), gr.JSON()], title="Image to Figma Layers (with DETR)", description="Upload a PNG or JPEG UI image to detect editable layers using a layout-aware DETR model." ) iface.launch()