File size: 22,162 Bytes
1ec5d3f ce91b95 1ec5d3f ce91b95 1ec5d3f ce91b95 1ec5d3f ce91b95 1ec5d3f ce91b95 1ec5d3f ce91b95 1ec5d3f ce91b95 1ec5d3f ce91b95 1ec5d3f ce91b95 1ec5d3f ce91b95 1ec5d3f ce91b95 1ec5d3f ce91b95 1ec5d3f ce91b95 1ec5d3f ce91b95 1ec5d3f ce91b95 1ec5d3f ce91b95 1ec5d3f ce91b95 1ec5d3f ce91b95 1ec5d3f ce91b95 1ec5d3f ce91b95 1ec5d3f ce91b95 1ec5d3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
import gradio as gr
import json
import time
from typing import Dict, Tuple, List
from bertmodel import predict_label
# from ecologits import EcoLogits # Removed - using OpenRouter instead
# from openai import OpenAI # Removed - using OpenRouter instead
from dotenv import load_dotenv
import os
import requests
import json
# Set environment variable to suppress tokenizers warning
os.environ["TOKENIZERS_PARALLELISM"] = "false"
load_dotenv()
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY", "")
# Model configurations with energy consumption and cost estimates
MODEL_CONFIGS = {
"large": {
"name": "Llama 3.1 405B",
"energy_per_token": 0.238, # Wh per token (11.9 Wh / 50 tokens)
"cost_per_input_token": 0.000003, # $3/M tokens (OpenRouter pricing)
"cost_per_output_token": 0.000003, # $3/M tokens (OpenRouter pricing)
"icon": "π¦"
},
"small": {
"name": "Mistral Small 24B",
"energy_per_token": 0.00596, # Wh per token (0.298 Wh / 50 tokens)
"cost_per_input_token": 0.00000005, # $0.05/M tokens
"cost_per_output_token": 0.00000012, # $0.12/M tokens
"icon": "β‘"
}
}
class ModelRouter:
def __init__(self):
self.routing_history = []
print("[INIT] ModelRouter initialized")
def classify_prompt(self, prompt: str) -> str:
print(f"\n[CLASSIFY] Classifying prompt: '{prompt[:50]}...'")
label = predict_label(prompt)
print(f"[CLASSIFY] ModernBERT returned label: '{label}'")
return label
def select_model(self, prompt: str) -> str:
"""Select the most efficient model based on prompt classification."""
prompt_type = self.classify_prompt(prompt)
# Normalize
key = prompt_type.strip().lower()
print(f"[SELECT] Normalized label: '{key}'")
# Map normalized labels to actual MODEL_CONFIGS keys
if "small" in key:
print(f"[SELECT] Selected: SMALL model (Mistral Small 24B)")
return "small"
else:
print(f"[SELECT] Selected: LARGE model (Claude Opus 4)")
return "large"
def estimate_tokens(self,
prompt: str,
response: str | None = None,
max_response_tokens: int | None = None) -> int:
"""
Estimate total token count: exact prompt tokens +
a target number of response tokens.
"""
# Simple estimation: 4 characters = 1 token
prompt_tokens = len(prompt) // 4
print(f"[TOKENS] Prompt tokens: {prompt_tokens} (from {len(prompt)} chars)")
if response is not None:
response_tokens = len(response) // 4
elif max_response_tokens is not None:
# youβre reserving this many tokens for the modelβs reply
response_tokens = max_response_tokens
else:
# Estimate response will be similar length to prompt
response_tokens = prompt_tokens
total_tokens = prompt_tokens + response_tokens
print(f"[TOKENS] Response tokens: {response_tokens}, Total: {total_tokens}")
return total_tokens
def estimate_large_model_energy(self, tokens: int) -> float:
"""
Estimate large model energy consumption based on tokens.
Using empirical estimates for energy consumption.
"""
large_config = MODEL_CONFIGS["large"]
return tokens * large_config["energy_per_token"]
def calculate_savings(self, selected_model: str, prompt: str, response: str = None) -> Dict:
"""Calculate energy and cost savings compared to using the large model"""
print(f"[SAVINGS] Calculating for model: {selected_model}")
# Calculate input and output tokens separately
input_tokens = max(1, len(prompt) // 4) # Minimum 1 token
if response:
# Use actual response length if available
output_tokens = max(1, len(response) // 4)
else:
# Estimate if no response yet (for preview)
output_tokens = max(10, input_tokens) # Assume at least 10 tokens response
total_tokens = input_tokens + output_tokens
print(f"[SAVINGS] Input tokens: {input_tokens}, Output tokens: {output_tokens}")
selected_config = MODEL_CONFIGS[selected_model]
large_config = MODEL_CONFIGS["large"]
# Calculate actual usage
actual_energy = total_tokens * selected_config["energy_per_token"]
actual_cost = (input_tokens * selected_config["cost_per_input_token"] +
output_tokens * selected_config["cost_per_output_token"])
# Calculate large model usage
large_energy = self.estimate_large_model_energy(total_tokens)
large_cost = (input_tokens * large_config["cost_per_input_token"] +
output_tokens * large_config["cost_per_output_token"])
# Calculate savings (only positive if small model is selected)
if selected_model == "small":
energy_saved = large_energy - actual_energy
cost_saved = large_cost - actual_cost
energy_saved_percent = (energy_saved / large_energy) * 100 if large_energy > 0 else 0
cost_saved_percent = (cost_saved / large_cost) * 100 if large_cost > 0 else 0
else:
# No savings if using the large model
energy_saved = 0
cost_saved = 0
energy_saved_percent = 0
cost_saved_percent = 0
print(f"[SAVINGS] Selected: {selected_model}")
print(f"[SAVINGS] Actual energy: {actual_energy:.4f} Wh, Large energy: {large_energy:.4f} Wh")
print(f"[SAVINGS] Actual cost: ${actual_cost:.8f}, Large cost: ${large_cost:.8f}")
print(f"[SAVINGS] Energy saved: {energy_saved:.4f} Wh ({energy_saved_percent:.1f}%)")
print(f"[SAVINGS] Cost saved: ${cost_saved:.8f} ({cost_saved_percent:.1f}%)")
return {
"selected_model": selected_config["name"],
"tokens": total_tokens,
"actual_energy": actual_energy,
"actual_cost": actual_cost,
"large_energy": large_energy,
"large_cost": large_cost,
"energy_saved": energy_saved,
"cost_saved": cost_saved,
"energy_saved_percent": energy_saved_percent,
"cost_saved_percent": cost_saved_percent,
"is_large_model": selected_model == "large" # Add flag for template
}
print("[STARTUP] Initializing ModelRouter...")
router = ModelRouter()
print("[STARTUP] ModelRouter ready")
print(f"[STARTUP] Available models: {list(MODEL_CONFIGS.keys())}")
print(f"[STARTUP] OpenRouter API Key: {'SET' if OPENROUTER_API_KEY else 'NOT SET'}")
def process_message(message: str, history: List[List[str]]) -> Tuple[str, str, str]:
"""Process the user message and return response with savings info"""
print(f"\n{'='*60}")
print(f"[PROCESS] New message received: '{message[:100]}...'")
# Route to appropriate model
selected_model = router.select_model(message)
model_config = MODEL_CONFIGS[selected_model]
print(f"[PROCESS] Using model config: {model_config['name']}")
# Initial savings estimate (will be recalculated after getting response)
print(f"[PROCESS] Calculating initial savings estimate...")
initial_savings = router.calculate_savings(selected_model, message)
print(f"[PROCESS] Initial estimate: {initial_savings['energy_saved_percent']:.1f}% energy, {initial_savings['cost_saved_percent']:.1f}% cost")
open_router_model_dict = {
"large": "meta-llama/llama-3.1-405b-instruct",
"small": "mistralai/mistral-small-24b-instruct-2501"
}
# Check if API key is available
if not OPENROUTER_API_KEY:
print(f"[API] No OpenRouter API key found - running in DEMO MODE")
answer = f"[Demo Mode] This would be a response from {model_config['name']} to: {message[:50]}..."
else:
print(f"[API] OpenRouter API key found: {OPENROUTER_API_KEY[:10]}...")
try:
model_id = open_router_model_dict[selected_model]
print(f"[API] Calling OpenRouter with model: {model_id}")
request_data = {
"model": model_id,
"messages": [
{
"role": "user",
"content": message
}
]
}
print(f"[API] Request data: {json.dumps(request_data, indent=2)[:200]}...")
response = requests.post(
url="https://openrouter.ai/api/v1/chat/completions",
headers={
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"Content-Type": "application/json"
},
data=json.dumps(request_data)
)
# Debug: print response status and content
print(f"[API] Response Status Code: {response.status_code}")
print(f"[API] Response Headers: {dict(response.headers)}")
if response.status_code != 200:
print(f"[API ERROR] Full response: {response.text}")
answer = f"[API Error {response.status_code}] {response.text[:200]}..."
else:
data = response.json()
print(f"[API] Response keys: {list(data.keys())}")
if "choices" in data and len(data["choices"]) > 0:
answer = data["choices"][0]["message"]["content"]
print(f"[API] Successfully got response: {answer[:100]}...")
else:
print(f"[API ERROR] Unexpected response format: {json.dumps(data, indent=2)}")
answer = f"[Error] Unexpected response format from OpenRouter API"
except Exception as e:
print(f"[API EXCEPTION] Error type: {type(e).__name__}")
print(f"[API EXCEPTION] Error message: {str(e)}")
import traceback
print(f"[API EXCEPTION] Traceback:\n{traceback.format_exc()}")
answer = f"[Error] Failed to get response from {model_config['name']}. Error: {str(e)}"
# Recalculate savings with actual response
print(f"[PROCESS] Recalculating savings with actual response...")
savings = router.calculate_savings(selected_model, message, answer)
print(f"[PROCESS] Final savings: {savings['energy_saved_percent']:.1f}% energy, {savings['cost_saved_percent']:.1f}% cost")
# Format the response with model info
response = f"{answer}\n\n<div style='background: #f0f9ff; border-left: 3px solid #0ea5e9; padding: 8px 12px; margin-top: 10px; border-radius: 4px;'><small style='color: #0369a1; font-weight: 500;'>{model_config['icon']} Answered by {model_config['name']}</small></div>"
# Format model info
model_info = f"""
<div style="background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); padding: 20px; border-radius: 12px; margin-bottom: 20px;">
<div style="display: flex; align-items: center; margin-bottom: 10px;">
<span style="font-size: 2em; margin-right: 10px;">{model_config['icon']}</span>
<h3 style="margin: 0; color: #2c3e50;">{model_config['name']}</h3>
</div>
<p style="color: #5a6c7d; margin: 5px 0;">Optimal model selected for your query</p>
</div>
"""
# Format savings information with conditional display based on model
if savings['is_large_model']:
# Show actual consumption for large model with warning colors
savings_info = f"""
<div style="background: #ffffff; border: 1px solid #fed7aa; border-radius: 12px; padding: 20px;">
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 20px;">
<div>
<p style="color: #8795a1; margin: 0; font-size: 0.9em;">π₯ Energy Consumption</p>
<p style="color: #ea580c; font-size: 1.5em; font-weight: bold; margin: 5px 0;">
{savings['actual_energy']:.1f} Wh
</p>
<p style="color: #7c2d12; font-size: 0.85em; margin: 0;">
High energy usage
</p>
</div>
<div>
<p style="color: #8795a1; margin: 0; font-size: 0.9em;">πΈ Cost Impact</p>
<p style="color: #dc2626; font-size: 1.5em; font-weight: bold; margin: 5px 0;">
${savings['actual_cost']:.6f}
</p>
<p style="color: #991b1b; font-size: 0.85em; margin: 0;">
Premium pricing
</p>
</div>
</div>
</div>
"""
else:
# Show savings for small model with positive colors
savings_info = f"""
<div style="background: #ffffff; border: 1px solid #e1e8ed; border-radius: 12px; padding: 20px;">
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 20px;">
<div>
<p style="color: #8795a1; margin: 0; font-size: 0.9em;">β‘ Energy Efficiency</p>
<p style="color: #22c55e; font-size: 1.5em; font-weight: bold; margin: 5px 0;">
{savings['energy_saved_percent']:.1f}% saved
</p>
<p style="color: #5a6c7d; font-size: 0.85em; margin: 0;">
{savings['energy_saved']:.1f} Wh reduction
</p>
<p style="color: #8795a1; font-size: 0.75em; margin: 3px 0 0 0; font-style: italic;">
vs. using large model
</p>
</div>
<div>
<p style="color: #8795a1; margin: 0; font-size: 0.9em;">π° Cost Optimization</p>
<p style="color: #3b82f6; font-size: 1.5em; font-weight: bold; margin: 5px 0;">
{savings['cost_saved_percent']:.1f}% saved
</p>
<p style="color: #5a6c7d; font-size: 0.85em; margin: 0;">
${savings['cost_saved']:.8f} reduction
</p>
<p style="color: #8795a1; font-size: 0.75em; margin: 3px 0 0 0; font-style: italic;">
vs. using large model
</p>
</div>
</div>
</div>
"""
# Add to routing history
router.routing_history.append({
"timestamp": time.time(),
"prompt": message,
"model": selected_model,
"savings": savings
})
print(f"[PROCESS] Response formatted, returning to UI")
print(f"{'='*60}\n")
return response, model_info, savings_info
def get_statistics() -> str:
"""Get cumulative statistics from routing history"""
if not router.routing_history:
return """
<div style="background: #f8fafc; border-radius: 12px; padding: 30px; text-align: center; color: #64748b;">
<p style="margin: 0;">No queries processed yet</p>
<p style="margin: 10px 0 0 0; font-size: 0.9em;">π¬ Start a conversation to see your impact metrics</p>
</div>
"""
total_queries = len(router.routing_history)
# Calculate user's total savings
user_total_energy_saved = sum(entry["savings"]["energy_saved"] for entry in router.routing_history)
user_total_cost_saved = sum(entry["savings"]["cost_saved"] for entry in router.routing_history)
# Count how many times each model was used
small_model_count = sum(1 for entry in router.routing_history if entry["model"] == "small")
large_model_count = sum(1 for entry in router.routing_history if entry["model"] == "large")
stats = f"""
<div style="background: #ffffff; border: 1px solid #e2e8f0; border-radius: 12px; padding: 25px;">
<div style="text-align: center; margin-bottom: 20px;">
<h4 style="color: #1e293b; font-size: 1.1em; margin: 0; font-weight: 600;">π Your Total Impact</h4>
</div>
<div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 15px; margin-bottom: 15px;">
<div style="background: #f0fdf4; border-radius: 8px; padding: 15px; text-align: center;">
<p style="color: #166534; font-size: 0.9em; margin: 0;">π± Energy Saved</p>
<p style="color: #15803d; font-size: 1.5em; font-weight: bold; margin: 5px 0;">
{user_total_energy_saved:.1f}
</p>
<p style="color: #166534; font-size: 0.8em; margin: 0;">Wh</p>
</div>
<div style="background: #eff6ff; border-radius: 8px; padding: 15px; text-align: center;">
<p style="color: #1e40af; font-size: 0.9em; margin: 0;">π΅ Money Saved</p>
<p style="color: #2563eb; font-size: 1.5em; font-weight: bold; margin: 5px 0;">
${user_total_cost_saved:.6f}
</p>
<p style="color: #1e40af; font-size: 0.8em; margin: 0;">USD</p>
</div>
</div>
<div style="background: #fefce8; border-radius: 8px; padding: 12px; text-align: center;">
<p style="color: #713f12; font-size: 0.9em; margin: 0;">
<span style="font-weight: 600;">Model Usage:</span> Small model {small_model_count}x, Large model {large_model_count}x
</p>
</div>
</div>
"""
return stats
# Custom CSS for a more professional look
custom_css = """
.gradio-container {
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', 'Roboto', 'Helvetica', 'Arial', sans-serif;
}
.message {
padding: 12px 16px !important;
border-radius: 8px !important;
}
"""
# Create Gradio interface
with gr.Blocks(
title="Do I really need a huge LLM?",
theme=gr.themes.Base(
primary_hue="blue",
secondary_hue="gray",
neutral_hue="gray",
font=["Inter", "system-ui", "sans-serif"]
),
css=custom_css
) as demo:
with gr.Row():
with gr.Column(scale=3):
gr.Markdown("""
<div style="margin-bottom: 30px;">
<h1 style="margin: 0; font-size: 2em; font-weight: 600; color: #0f172a;">
π€ Do I *really* need a huge LLM?
</h1>
<p style="margin: 10px 0 0 0; color: #64748b; font-size: 1.1em;">
Let's find out! This tool automatically routes your queries to the right-sized model. π―
</p>
</div>
""")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
height=500,
show_label=False,
container=True,
elem_classes=["chat-container"]
)
with gr.Row():
msg = gr.Textbox(
placeholder="π Type your message here...",
show_label=False,
scale=9,
container=False,
elem_classes=["message-input"]
)
submit = gr.Button(
"Send π",
variant="primary",
scale=1,
min_width=100
)
with gr.Column(scale=2):
# Model selection display
model_display = gr.HTML(
value="""
<div style="background: #f8fafc; border-radius: 12px; padding: 20px; text-align: center; color: #64748b;">
<p style="margin: 0;">π€ Model selection will appear here</p>
</div>
""",
label="Selected Model"
)
# Savings metrics
savings_display = gr.HTML(
value="""
<div style="background: #f8fafc; border-radius: 12px; padding: 20px; text-align: center; color: #64748b;">
<p style="margin: 0;">π Efficiency metrics will appear here</p>
</div>
""",
label="Efficiency Metrics"
)
# Cumulative stats
stats_display = gr.HTML(
value=get_statistics(),
label="Your Impact Dashboard"
)
# Footer with minimal info
with gr.Row():
gr.Markdown("""
<div style="margin-top: 40px; padding-top: 20px; border-top: 1px solid #e2e8f0; text-align: center; color: #94a3b8; font-size: 0.85em;">
<p style="margin: 5px 0;">π Comparing small vs large model efficiency β’ π Real-time tracking β’ π Environmental impact monitoring</p>
</div>
""")
def respond(message, chat_history):
response, model_info, savings = process_message(message, chat_history)
chat_history.append((message, response))
return "", chat_history, model_info, savings, get_statistics()
msg.submit(respond, [msg, chatbot], [msg, chatbot, model_display, savings_display, stats_display])
submit.click(respond, [msg, chatbot], [msg, chatbot, model_display, savings_display, stats_display])
# Clear button functionality
def clear_chat():
return None, """
<div style="background: #f8fafc; border-radius: 12px; padding: 20px; text-align: center; color: #64748b;">
<p style="margin: 0;">Model selection will appear here</p>
</div>
""", """
<div style="background: #f8fafc; border-radius: 12px; padding: 20px; text-align: center; color: #64748b;">
<p style="margin: 0;">Efficiency metrics will appear here</p>
</div>
""", get_statistics()
# Add clear functionality to the Enter key
msg.submit(lambda: "", outputs=[msg])
if __name__ == "__main__":
print(f"\n{'='*60}")
print(f" DO I REALLY NEED A HUGE LLM? - STARTUP")
print(f"{'='*60}")
print(f"[LAUNCH] Starting Gradio app...")
print(f"[LAUNCH] Environment: TOKENIZERS_PARALLELISM={os.environ.get('TOKENIZERS_PARALLELISM')}")
print(f"[LAUNCH] Models configured:")
for k, v in MODEL_CONFIGS.items():
print(f" - {k}: {v['name']} ({v['icon']})")
print(f"[LAUNCH] OpenRouter API Key: {'β SET' if OPENROUTER_API_KEY else 'β NOT SET (Demo Mode)'}")
print(f"{'='*60}\n")
demo.launch(share=False) |