File size: 25,496 Bytes
57276d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
import cv2
import numpy as np
from typing import Optional, Literal

import random
import matplotlib
import open3d as o3d

import torch
import torch.nn.functional as F
from collections import defaultdict


def spherical_uv_to_directions(uv: np.ndarray):
    r"""
    Convert spherical UV coordinates to 3D directions.
    Args:
        uv (np.ndarray): UV coordinates in the range [0, 1]. Shape: (H, W, 2).
    Returns:
        directions (np.ndarray): 3D directions corresponding to the UV coordinates. Shape: (H, W, 3).
    """
    theta, phi = (1 - uv[..., 0]) * (2 * np.pi), uv[..., 1] * np.pi
    directions = np.stack([np.sin(phi) * np.cos(theta),
                          np.sin(phi) * np.sin(theta), np.cos(phi)], axis=-1)
    return directions


def depth_match(init_pred: dict, bg_pred: dict, mask: np.ndarray, quantile: float = 0.3) -> dict:
    r"""
    Match the background depth map to the scale of the initial depth map.
    Args:
        init_pred (dict): Initial depth prediction containing "distance" key.
        bg_pred (dict): Background depth prediction containing "distance" key.
        mask (np.ndarray): Binary mask indicating valid pixels in the background depth map.
        quantile (float): Quantile to use for selecting the depth range for scale matching.
    Returns:
        bg_pred (dict): Background depth prediction with adjusted "distance" key.
    """
    valid_mask = mask > 0
    init_distance = init_pred["distance"][valid_mask]
    bg_distance = bg_pred["distance"][valid_mask]

    init_mask = init_distance < torch.quantile(init_distance, quantile)
    bg_mask = bg_distance < torch.quantile(bg_distance, quantile)
    scale = init_distance[init_mask].median() / bg_distance[bg_mask].median()
    bg_pred["distance"] *= scale
    return bg_pred



def _fill_small_boundary_spikes(
    mesh: o3d.geometry.TriangleMesh,
    max_bridge_dist: float,
    repeat_times: int = 3,
    max_connection_step: int = 8,
) -> o3d.geometry.TriangleMesh:
    r"""
    Fill small boundary spikes in a mesh by creating triangles between boundary vertices.
    Args:
        mesh (o3d.geometry.TriangleMesh): The input mesh to process.
        max_bridge_dist (float): Maximum distance allowed for bridging boundary vertices.
        repeat_times (int): Number of iterations to repeat the filling process.
        max_connection_step (int): Maximum number of steps to connect boundary vertices.
    Returns:
        o3d.geometry.TriangleMesh: The mesh with small boundary spikes filled.
    """
    for iteration in range(repeat_times):
        if not mesh.has_triangles() or not mesh.has_vertices():
            return mesh

        vertices = np.asarray(mesh.vertices)
        triangles = np.asarray(mesh.triangles)

        # 1. Identify boundary edges
        edge_to_triangle_count = defaultdict(int)

        for tri_idx, tri in enumerate(triangles):
            for i in range(3):
                v1_idx, v2_idx = tri[i], tri[(i + 1) % 3]
                edge = tuple(sorted((v1_idx, v2_idx)))
                edge_to_triangle_count[edge] += 1

        boundary_edges = [edge for edge,
                          count in edge_to_triangle_count.items() if count == 1]

        if not boundary_edges:
            return mesh

        # 2. Create an adjacency list for boundary vertices using only boundary edges
        boundary_adj = defaultdict(list)
        for v1_idx, v2_idx in boundary_edges:
            boundary_adj[v1_idx].append(v2_idx)
            boundary_adj[v2_idx].append(v1_idx)

        # 3. Process boundary vertices with new smooth filling algorithm
        new_triangles_list = []
        edge_added = defaultdict(bool)

        # print(f"DEBUG: Found {len(boundary_edges)} boundary edges.")
        # print(f"DEBUG: Max bridge distance set to: {max_bridge_dist}")

        new_triangles_added_count = 0

        for v_curr_idx, neighbors in boundary_adj.items():
            if len(neighbors) != 2:  # Only process vertices with exactly 2 boundary neighbors
                continue

            v_a_idx, v_b_idx = neighbors[0], neighbors[1]

            # Skip if these vertices already form a triangle
            potential_edge = tuple(sorted((v_a_idx, v_b_idx)))
            if edge_to_triangle_count[potential_edge] > 0 or edge_added[potential_edge]:
                continue

            # Calculate distances
            v_curr_coord = vertices[v_curr_idx]
            v_a_coord = vertices[v_a_idx]
            v_b_coord = vertices[v_b_idx]

            dist_a_b = np.linalg.norm(v_a_coord - v_b_coord)

            # Skip if distance exceeds threshold
            if dist_a_b > max_bridge_dist:
                continue

            # Create simple triangle (v_a, v_b, v_curr)
            new_triangles_list.append([v_a_idx, v_b_idx, v_curr_idx])
            new_triangles_added_count += 1
            edge_added[potential_edge] = True

            # Mark edges as processed
            edge_added[tuple(sorted((v_curr_idx, v_a_idx)))] = True
            edge_added[tuple(sorted((v_curr_idx, v_b_idx)))] = True

        # 4. Now process multi-step connections for better smoothing
        # First build boundary chains for multi-step connections
        boundary_loops = []
        visited_vertices = set()

        # Find boundary vertices with exactly 2 neighbors (part of continuous chains)
        chain_starts = [v for v in boundary_adj if len(
            boundary_adj[v]) == 2 and v not in visited_vertices]

        for start_vertex in chain_starts:
            if start_vertex in visited_vertices:
                continue

            chain = []
            curr_vertex = start_vertex

            # Follow the chain in one direction
            while curr_vertex not in visited_vertices:
                visited_vertices.add(curr_vertex)
                chain.append(curr_vertex)

                next_candidates = [
                    n for n in boundary_adj[curr_vertex] if n not in visited_vertices]
                if not next_candidates:
                    break

                curr_vertex = next_candidates[0]

            if len(chain) >= 3:
                boundary_loops.append(chain)

        # Process each boundary chain for multi-step smoothing
        for chain in boundary_loops:
            chain_length = len(chain)

            # Skip very small chains
            if chain_length < 3:
                continue

            # Compute multi-step connections
            max_step = min(max_connection_step, chain_length - 1)

            for i in range(chain_length):
                anchor_idx = chain[i]
                anchor_coord = vertices[anchor_idx]

                for step in range(3, max_step + 1):
                    if i + step >= chain_length:
                        break

                    far_idx = chain[i + step]
                    far_coord = vertices[far_idx]

                    # Check distance criteria
                    dist_anchor_far = np.linalg.norm(anchor_coord - far_coord)
                    if dist_anchor_far > max_bridge_dist * step:
                        continue

                    # Check if anchor and far are already connected
                    edge_anchor_far = tuple(sorted((anchor_idx, far_idx)))
                    if edge_to_triangle_count[edge_anchor_far] > 0 or edge_added[edge_anchor_far]:
                        continue

                    # Create fan triangles
                    fan_valid = True
                    fan_triangles = []

                    prev_mid_idx = anchor_idx

                    for j in range(1, step):
                        mid_idx = chain[i + j]

                        if prev_mid_idx != anchor_idx:
                            tri_edge1 = tuple(sorted((anchor_idx, mid_idx)))
                            tri_edge2 = tuple(sorted((prev_mid_idx, mid_idx)))

                            # Check if edges already exist (not created by our fan)
                            if (edge_to_triangle_count[tri_edge1] > 0 and not edge_added[tri_edge1]) or \
                               (edge_to_triangle_count[tri_edge2] > 0 and not edge_added[tri_edge2]):
                                fan_valid = False
                                break

                            fan_triangles.append(
                                [anchor_idx, prev_mid_idx, mid_idx])

                        prev_mid_idx = mid_idx

                    # Add final triangle to connect to far_idx
                    if fan_valid:
                        fan_triangles.append(
                            [anchor_idx, prev_mid_idx, far_idx])

                    # Add all fan triangles if valid
                    if fan_valid and fan_triangles:
                        for triangle in fan_triangles:
                            v_a, v_b, v_c = triangle
                            edge_ab = tuple(sorted((v_a, v_b)))
                            edge_bc = tuple(sorted((v_b, v_c)))
                            edge_ac = tuple(sorted((v_a, v_c)))

                            new_triangles_list.append(triangle)
                            new_triangles_added_count += 1

                            edge_added[edge_ab] = True
                            edge_added[edge_bc] = True
                            edge_added[edge_ac] = True

                        # Once we've added a fan, move to the next anchor
                        break

        if new_triangles_added_count == 0:
            break

        # Update the mesh with new triangles
        if new_triangles_list:
            all_triangles_np = np.vstack(
                (triangles, np.array(new_triangles_list, dtype=np.int32)))

            final_mesh = o3d.geometry.TriangleMesh()
            final_mesh.vertices = o3d.utility.Vector3dVector(vertices)
            final_mesh.triangles = o3d.utility.Vector3iVector(all_triangles_np)

            if mesh.has_vertex_colors():
                final_mesh.vertex_colors = mesh.vertex_colors

            # Clean up the mesh
            final_mesh.remove_degenerate_triangles()
            final_mesh.remove_unreferenced_vertices()
            mesh = final_mesh

    return mesh


def pano_sheet_warping(
    rgb: torch.Tensor,  # (H, W, 3) RGB image, values [0, 1]
    distance: torch.Tensor,  # (H, W) Distance map
    rays: torch.Tensor,  # (H, W, 3) Ray directions (unit vectors ideally)
    # (H, W) Optional boolean mask
    excluded_region_mask: Optional[torch.Tensor] = None,
    max_size: int = 4096,  # Max dimension for resizing
    device: Literal["cuda", "cpu"] = "cuda",  # Computation device
    # Max distance to bridge boundary vertices
    connect_boundary_max_dist: Optional[float] = 0.5,
    connect_boundary_repeat_times: int = 2
) -> o3d.geometry.TriangleMesh:
    r"""
    Converts panoramic RGBD data (image, distance, rays) into an Open3D mesh.
    Args:
        image: Input RGB image tensor (H, W, 3), uint8 or float [0, 255].
        distance: Input distance map tensor (H, W).
        rays: Input ray directions tensor (H, W, 3). Assumed to originate from (0,0,0).
        excluded_region_mask: Optional boolean mask tensor (H, W). True values indicate regions to potentially exclude.
        max_size: Maximum size (height or width) to resize inputs to.
        device: The torch device ('cuda' or 'cpu') to use for computations.

    Returns:
        An Open3D TriangleMesh object.
    """
    assert rgb.ndim == 3 and rgb.shape[2] == 3, "Image must be HxWx3"
    assert distance.ndim == 2, "Distance must be HxW"
    assert rays.ndim == 3 and rays.shape[2] == 3, "Rays must be HxWx3"
    assert (
        rgb.shape[:2] == distance.shape[:2] == rays.shape[:2]
    ), "Input shapes must match"

    mask = excluded_region_mask

    if mask is not None:
        assert (
            mask.ndim == 2 and mask.shape[:2] == rgb.shape[:2]
        ), "Mask shape must match"
        assert mask.dtype == torch.bool, "Mask must be a boolean tensor"

    rgb = rgb.to(device)
    distance = distance.to(device)
    rays = rays.to(device)
    if mask is not None:
        mask = mask.to(device)

    H, W = distance.shape
    if max(H, W) > max_size:
        scale = max_size / max(H, W)
    else:
        scale = 1.0

    # --- Resize Inputs ---
    rgb_nchw = rgb.permute(2, 0, 1).unsqueeze(0)
    distance_nchw = distance.unsqueeze(0).unsqueeze(0)
    rays_nchw = rays.permute(2, 0, 1).unsqueeze(0)

    rgb_resized = (
        F.interpolate(
            rgb_nchw,
            scale_factor=scale,
            mode="bilinear",
            align_corners=False,
            recompute_scale_factor=False,
        )
        .squeeze(0)
        .permute(1, 2, 0)
    )

    distance_resized = (
        F.interpolate(
            distance_nchw,
            scale_factor=scale,
            mode="bilinear",
            align_corners=False,
            recompute_scale_factor=False,
        )
        .squeeze(0)
        .squeeze(0)
    )

    rays_resized_nchw = F.interpolate(
        rays_nchw,
        scale_factor=scale,
        mode="bilinear",
        align_corners=False,
        recompute_scale_factor=False,
    )

    # IMPORTANT: Renormalize ray directions after interpolation
    rays_resized = rays_resized_nchw.squeeze(0).permute(1, 2, 0)
    rays_norm = torch.linalg.norm(rays_resized, dim=-1, keepdim=True)
    rays_resized = rays_resized / (rays_norm + 1e-8)

    if mask is not None:
        mask_resized = (
            F.interpolate(
                # Needs float for interpolation
                mask.unsqueeze(0).unsqueeze(0).float(),
                scale_factor=scale,
                mode="nearest",  # Or 'nearest' if sharp boundaries are critical
                # align_corners=False,
                recompute_scale_factor=False,
            )
            .squeeze(0)
            .squeeze(0)
        )
        mask_resized = mask_resized > 0.5  # Convert back to boolean
    else:
        mask_resized = None

    H_new, W_new = distance_resized.shape  # Get new dimensions

    # --- Calculate 3D Vertices ---
    # Vertex position = origin + distance * ray_direction
    # Assuming origin is (0, 0, 0)
    distance_flat = distance_resized.reshape(-1, 1)  # (H*W, 1)
    rays_flat = rays_resized.reshape(-1, 3)  # (H*W, 3)
    vertices = distance_flat * rays_flat  # (H*W, 3)
    vertex_colors = rgb_resized.reshape(-1, 3)  # (H*W, 3)

    # --- Generate Mesh Faces (Triangles from Quads) ---
    # Vectorized approach for generating faces, including seam connection
    # Rows for the top of quads
    row_indices = torch.arange(0, H_new - 1, device=device)
    # Columns for the left of quads (includes last col for wrapping)
    col_indices = torch.arange(0, W_new, device=device)

    # Create 2D grids of row and column coordinates for quad corners
    # These represent the (row, col) of the top-left vertex of each quad
    # Shape: (H_new-1, W_new)
    quad_row_coords = row_indices.view(-1, 1).expand(-1, W_new)
    quad_col_coords = col_indices.view(
        1, -1).expand(H_new-1, -1)  # Shape: (H_new-1, W_new)

    # Top-left vertex indices
    tl_row, tl_col = quad_row_coords, quad_col_coords
    # Top-right vertex indices (with wrap-around)
    tr_row, tr_col = quad_row_coords, (quad_col_coords + 1) % W_new
    # Bottom-left vertex indices
    bl_row, bl_col = (quad_row_coords + 1), quad_col_coords
    # Bottom-right vertex indices (with wrap-around)
    br_row, br_col = (quad_row_coords + 1), (quad_col_coords + 1) % W_new

    # Convert 2D (row, col) coordinates to 1D vertex indices
    tl = tl_row * W_new + tl_col
    tr = tr_row * W_new + tr_col
    bl = bl_row * W_new + bl_col
    br = br_row * W_new + br_col

    # Apply mask if provided
    if mask_resized is not None:
        # Get mask values for each corner of the quads
        mask_tl_vals = mask_resized[tl_row, tl_col]
        mask_tr_vals = mask_resized[tr_row, tr_col]
        mask_bl_vals = mask_resized[bl_row, bl_col]
        mask_br_vals = mask_resized[br_row, br_col]

        # A quad is kept if none of its vertices are masked
        # Shape: (H_new-1, W_new)
        quad_keep_mask = ~(mask_tl_vals | mask_tr_vals |
                           mask_bl_vals | mask_br_vals)

        # Filter vertex indices based on the keep mask
        tl = tl[quad_keep_mask]  # Result is flattened
        tr = tr[quad_keep_mask]
        bl = bl[quad_keep_mask]
        br = br[quad_keep_mask]
    else:
        # If no mask, flatten all potential quads' vertex indices
        tl = tl.flatten()
        tr = tr.flatten()
        bl = bl.flatten()
        br = br.flatten()

    # Create triangles (two per quad)
    # Using the same winding order as before: (tl, tr, bl) and (tr, br, bl)
    tri1 = torch.stack([tl, tr, bl], dim=1)
    tri2 = torch.stack([tr, br, bl], dim=1)
    faces = torch.cat([tri1, tri2], dim=0)

    mesh_o3d = o3d.geometry.TriangleMesh()
    mesh_o3d.vertices = o3d.utility.Vector3dVector(vertices.cpu().numpy())
    mesh_o3d.triangles = o3d.utility.Vector3iVector(faces.cpu().numpy())
    mesh_o3d.vertex_colors = o3d.utility.Vector3dVector(
        vertex_colors.cpu().numpy())
    mesh_o3d.remove_unreferenced_vertices()
    mesh_o3d.remove_degenerate_triangles()

    if connect_boundary_max_dist is not None and connect_boundary_max_dist > 0:
        mesh_o3d = _fill_small_boundary_spikes(
            mesh_o3d, connect_boundary_max_dist, connect_boundary_repeat_times)
        # Recompute normals after potential modification, if mesh still valid
        if mesh_o3d.has_triangles() and mesh_o3d.has_vertices():
            mesh_o3d.compute_vertex_normals()
            # Also computes triangle normals if vertex normals are computed
            mesh_o3d.compute_triangle_normals()

    return mesh_o3d


def get_no_fg_img(no_fg1_img, no_fg2_img, full_img):
    r"""Get the image without foreground objects based on available inputs.
    Args:
        no_fg1_img: Image with foreground layer 1 removed
        no_fg2_img: Image with foreground layer 2 removed
        full_img: Original full image
    Returns:
        Image without foreground objects, defaulting to full image if no fg-removed images available
    """
    fg_status = None
    if no_fg1_img is not None and no_fg2_img is not None:
        no_fg_img = no_fg2_img
        fg_status = "both_fg1_fg2"
    elif no_fg1_img is not None and no_fg2_img is None:
        no_fg_img = no_fg1_img
        fg_status = "only_fg1"
    elif no_fg1_img is None and no_fg2_img is not None:
        no_fg_img = no_fg2_img
        fg_status = "only_fg2"
    else:
        no_fg_img = full_img
        fg_status = "no_fg"

    assert fg_status is not None

    return no_fg_img, fg_status


def get_fg_mask(fg1_mask, fg2_mask):
    r"""
    Combine foreground masks from two layers.
    Args:
        fg1_mask: Foreground mask for layer 1
        fg2_mask: Foreground mask for layer 2
    Returns:
        Combined foreground mask, or None if both are None
    """
    if fg1_mask is not None and fg2_mask is not None:
        fg_mask = np.logical_or(fg1_mask, fg2_mask)
    elif fg1_mask is not None:
        fg_mask = fg1_mask
    elif fg2_mask is not None:
        fg_mask = fg2_mask
    else:
        fg_mask = None

    if fg_mask is not None:
        fg_mask = fg_mask.astype(np.bool_).astype(np.uint8)
    return fg_mask


def get_bg_mask(sky_mask, fg_mask, kernel_scale, dilation_kernel_size: int = 3):
    r"""
    Generate background mask based on sky and foreground masks.
    Args:
        sky_mask: Sky mask (boolean array)
        fg_mask: Foreground mask (boolean array)
        kernel_scale: Scale factor for the kernel size
        dilation_kernel_size: The size of the dilation kernel.
    Returns:
        Background mask as a boolean array, where True indicates background pixels.
    """
    kernel_size = dilation_kernel_size * kernel_scale
    if fg_mask is not None:
        bg_mask = np.logical_and(
            (1 - cv2.dilate(fg_mask,
             np.ones((kernel_size, kernel_size), np.uint8), iterations=1)),
            (1 - sky_mask),
        ).astype(np.uint8)
    else:
        bg_mask = 1 - sky_mask
    return bg_mask


def get_filtered_mask(disparity, beta=100, alpha_threshold=0.3, device="cuda"):
    """
    filter the disparity map using sobel kernel, then mask out the edge (depth discontinuity)
    Args:
        disparity: Disparity map in BHWC format, shape [b, h, w, 1]
        beta: Exponential decay factor for the Sobel magnitude
        alpha_threshold: Threshold for visibility mask
        device: Device to perform computations on, either 'cuda' or 'cpu'
    Returns:
        vis_mask: Visibility mask in BHWC format, shape [b, h, w, 1]
    """
    b, h, w, _ = disparity.size()
    # Permute to NCHW format: [b, 1, h, w]
    disparity_nchw = disparity.permute(0, 3, 1, 2)

    # Pad H and W dimensions with replicate padding
    disparity_padded = F.pad(
        disparity_nchw, (2, 2, 2, 2), mode="replicate"
    )  # Pad last two dims (W, H), [b, 1, h+4, w+4]

    kernel_x = (
        torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])
        .unsqueeze(0)
        .unsqueeze(0)
        .float()
        .to(device)
    )
    kernel_y = (
        torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]])
        .unsqueeze(0)
        .unsqueeze(0)
        .float()
        .to(device)
    )

    # Apply Sobel filters
    sobel_x = F.conv2d(
        disparity_padded, kernel_x, padding=(1, 1)
    )  # Output: [b, 1, h+4, w+4] # Corrected padding
    sobel_y = F.conv2d(
        disparity_padded, kernel_y, padding=(1, 1)
    )  # Output: [b, 1, h+4, w+4] # Corrected padding

    # Calculate magnitude
    sobel_mag_padded = torch.sqrt(
        sobel_x**2 + sobel_y**2
    )  # Shape: [b, 1, h+4, w+4]

    # Remove padding
    sobel_mag = sobel_mag_padded[
        :, :, 2:-2, 2:-2
    ]  # Shape: [b, 1, h, w] # Adjusted slicing

    # Calculate alpha and mask
    alpha = torch.exp(-1.0 * beta * sobel_mag)  # Shape: [b, 1, h, w]
    vis_mask_nchw = torch.greater(alpha, alpha_threshold).float()

    # Permute back to BHWC format: [b, h, w, 1]
    vis_mask = vis_mask_nchw.permute(0, 2, 3, 1)

    assert vis_mask.shape == disparity.shape  # Ensure output shape matches input
    return vis_mask


def sheet_warping(
    predictions, excluded_region_mask=None,
    connect_boundary_max_dist=0.5,
    connect_boundary_repeat_times=2,
    max_size=4096,
) -> o3d.geometry.TriangleMesh:
    r"""
    Convert depth predictions to a 3D mesh.
    Args:
        predictions: Dictionary containing:
            - "rgb": RGB image tensor of shape (H, W, 3) with
                values in [0, 255] (uint8) or [0, 1] (float).
            - "distance": Distance map tensor of shape (H, W).
            - "rays": Ray directions tensor of shape (H, W, 3).
        excluded_region_mask: Optional boolean mask tensor of shape (H, W).
        connect_boundary_max_dist: Maximum distance to bridge boundary vertices.
        connect_boundary_repeat_times: Number of iterations to repeat the boundary connection.
        max_size: Maximum size (height or width) to resize inputs to.
    Returns:
        An Open3D TriangleMesh object.
    """
    rgb = predictions["rgb"] / 255.0
    distance = predictions["distance"]
    rays = predictions["rays"]
    mesh = pano_sheet_warping(
        rgb, 
        distance, 
        rays, 
        excluded_region_mask, 
        connect_boundary_max_dist=connect_boundary_max_dist,
        connect_boundary_repeat_times=connect_boundary_repeat_times, 
        max_size=max_size
    )
    return mesh


def seed_all(seed: int = 0):
    r"""
    Set random seeds of all components.
    """
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)


def colorize_depth_maps(
    depth: np.ndarray, 
    mask: np.ndarray = None, 
    normalize: bool = True, 
    cmap: str = 'Spectral'
) -> np.ndarray:
    r"""
    Colorize depth maps using a colormap.
    Args:
        depth (np.ndarray): Depth map to colorize, shape (H, W).
        mask (np.ndarray, optional): Optional mask to apply to the depth map, shape (H, W).
        normalize (bool): Whether to normalize the depth values before colorization.
        cmap (str): Name of the colormap to use.
    Returns:
        np.ndarray: Colorized depth map, shape (H, W, 3).
    """
    # moge vis function
    if mask is None:
        depth = np.where(depth > 0, depth, np.nan)
    else:
        depth = np.where((depth > 0) & mask, depth, np.nan)

    # Convert depth to disparity (inverse of depth)
    disp = 1 / depth  # Closer objects have higher disparity values

    # Set invalid disparity values to the 0.1% quantile (avoids extreme outliers)
    if mask is not None:
        disp[~((depth > 0) & mask)] = np.nanquantile(disp, 0.001)

    # Normalize disparity values to [0,1] range if requested
    if normalize:
        min_disp, max_disp = np.nanquantile(
            disp, 0.001), np.nanquantile(disp, 0.99)
        disp = (disp - min_disp) / (max_disp - min_disp)
    # Apply colormap (inverted so closer=warmer colors)
    # Note: matplotlib colormaps return RGBA in [0,1] range
    colored = np.nan_to_num(
        matplotlib.colormaps[cmap](
            1.0 - disp)[..., :3],  # Invert and drop alpha
        nan=0  # Replace NaN with black
    )
    # Convert to uint8 and ensure contiguous memory layout
    colored = np.ascontiguousarray((colored.clip(0, 1) * 255).astype(np.uint8))

    return colored