Spaces:
Build error
Build error
File size: 14,360 Bytes
57276d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
import os
import cv2
import json
import torch
import gc # Added for garbage collection
from tqdm import tqdm
from PIL import Image
import numpy as np
from ..utils import sr_utils, seg_utils, inpaint_utils
class ImageProcessingPipeline:
"""Base class for image processing pipelines with common functionality"""
def __init__(self, params):
"""Initialize pipeline with processing parameters"""
self.params = params
self.seed = self._init_seed(params['seed'])
def _init_seed(self, seed_param):
"""Initialize random seed for reproducibility"""
if seed_param == -1:
import random
return random.randint(1, 65535)
return seed_param
def _prepare_output_dir(self, output_path):
"""Create output directory if it doesn't exist"""
os.makedirs(output_path, exist_ok=True)
def _prepare_image_path(self, img_path, output_path):
"""Create basic input image if it doesn't exist"""
full_image_path = f"{output_path}/full_image.png"
image = Image.open(img_path)
image.save(full_image_path)
def _get_image_path(self, base_dir, priority_files):
"""Get image path based on priority of existing files"""
for file in priority_files:
path = os.path.join(base_dir, file)
if os.path.exists(path):
return path
return os.path.join(base_dir, "full_image.png")
def _process_mask(self, mask_path, base_dir, size, mask_infos_key, edge_padding: int = 20):
"""Process mask with dilation and smoothing"""
mask_sharp = cv2.imread(os.path.join(base_dir, mask_path), 0)
with open(os.path.join(base_dir, f'{mask_infos_key}.json')) as f:
mask_infos = json.load(f)["bboxes"]
mask_smooth = inpaint_utils.get_adaptive_smooth_mask_ksize_ctrl(
mask_sharp, mask_infos,
basek=self.params['dilation_size'],
threshold=self.params['threshold'],
r=self.params['ratio']
)
# Apply edge padding
mask_smooth[:, 0:edge_padding] = 1
mask_smooth[:, -edge_padding:] = 1
return cv2.resize(mask_smooth, (size[1], size[0]), Image.BILINEAR)
def _run_inpainting(self, image, mask, size, prompt_config, image_info, inpaint_model):
"""Run inpainting with configured parameters"""
labels = image_info["labels"]
# process prompt
if self._is_indoor(image_info):
prompt = prompt_config["indoor"]["positive_prompt"]
negative_prompt = prompt_config["indoor"]["negative_prompt"]
else:
prompt = prompt_config["outdoor"]["positive_prompt"]
negative_prompt = prompt_config["outdoor"]["negative_prompt"]
if labels:
negative_prompt += ", " + ", ".join(labels)
result = inpaint_model(
prompt=prompt,
negative_prompt=negative_prompt,
image=image,
mask_image=mask,
height=size[0],
width=size[1],
strength=self.params['strength'],
true_cfg_scale=self.params['cfg_scale'],
guidance_scale=30,
num_inference_steps=50,
max_sequence_length=512,
generator=torch.Generator("cpu").manual_seed(self.seed),
).images[0]
# Clear memory after inpainting
torch.cuda.empty_cache()
gc.collect()
return result
def _is_indoor(self, img_info):
"""Check if image is classified as indoor"""
return img_info["class"] in ["indoor", "[indoor]"]
def _run_super_resolution(self, input_path, output_path, sr_model, suffix='sr'):
"""Run super-resolution on input image"""
if os.path.exists(input_path):
sr_utils.sr_inference(
input_path, output_path, sr_model,
scale=self.params['scale'], ext='auto', suffix=suffix
)
# Clear memory after super-resolution
torch.cuda.empty_cache()
gc.collect()
class ForegroundPipeline(ImageProcessingPipeline):
"""Pipeline for processing foreground layers (fg1 and fg2)"""
def __init__(self, params, layer):
"""Initialize with parameters and layer type (0 for fg1, 1 for fg2)"""
super().__init__(params)
self.layer = layer
self.layer_name = f"fg{layer+1}"
def process(self, img_infos, sr_model, zim_predictor, gd_processor, gd_model, inpaint_model):
"""Run full processing pipeline for foreground layer"""
print(f"============= Now starting {self.layer_name} processing ===============")
# Phase 1: Super Resolution
self._process_super_resolution(img_infos, sr_model)
# Phase 2: Segmentation
self._process_segmentation(img_infos, zim_predictor, gd_processor, gd_model)
# Phase 3: Inpainting
self._process_inpainting(img_infos, inpaint_model)
torch.cuda.empty_cache()
gc.collect()
def _process_super_resolution(self, img_infos, sr_model):
"""Process super-resolution phase"""
for img_info in tqdm(img_infos):
output_path = img_info["output_path"]
# prepare input image
if self.layer == 0:
self._prepare_image_path(img_info["image_path"], output_path)
input_path = self._get_image_path(output_path, [f"remove_fg1_image.png", "full_image.png"])
self._prepare_output_dir(output_path)
self._run_super_resolution(input_path, output_path, sr_model)
def _process_segmentation(self, img_infos, zim_predictor, gd_processor, gd_model):
"""Process segmentation phase"""
for img_info in tqdm(img_infos):
if not img_info.get("labels"):
continue
output_path = img_info["output_path"]
img_path = self._get_image_path(output_path, [f"remove_fg1_image.png", "full_image.png"])
img_sr_path = img_path.replace(".png", "_sr.png")
text = ". ".join(img_info["labels"]) + "." if img_info["labels"] else ""
if self._is_indoor(img_info):
seg_utils.get_fg_pad_indoor(
output_path, img_path, img_sr_path,
zim_predictor, gd_processor, gd_model,
text, layer=self.layer, scale=self.params['scale']
)
else:
seg_utils.get_fg_pad_outdoor(
output_path, img_path, img_sr_path,
zim_predictor, gd_processor, gd_model,
text, layer=self.layer, scale=self.params['scale']
)
# Clear memory after segmentation
torch.cuda.empty_cache()
gc.collect()
def _process_inpainting(self, img_infos, inpaint_model):
"""Process inpainting phase"""
for img_info in tqdm(img_infos):
base_dir = img_info["output_path"]
mask_path = f'{self.layer_name}_mask.png'
if not os.path.exists(os.path.join(base_dir, mask_path)):
continue
image = Image.open(self._get_image_path(
base_dir,
[f"remove_fg{self.layer}_image.png", "full_image.png"]
)).convert('RGB')
size = image.height, image.width
mask_smooth = self._process_mask(
mask_path, base_dir, size, self.layer_name
)
pano_mask_pil = Image.fromarray(mask_smooth*255)
result = self._run_inpainting(
image, pano_mask_pil, size,
self.params['prompt_config'], img_info, inpaint_model
)
result.save(f'{base_dir}/remove_{self.layer_name}_image.png')
# Clear memory after saving result
del image, mask_smooth, pano_mask_pil, result
torch.cuda.empty_cache()
gc.collect()
class SkyPipeline(ImageProcessingPipeline):
"""Pipeline for processing sky layer"""
def process(self, img_infos, sr_model, zim_predictor, gd_processor, gd_model, inpaint_model):
"""Run full processing pipeline for sky layer"""
print("============= Now starting sky processing ===============")
# Phase 1: Super Resolution
self._process_super_resolution(img_infos, sr_model)
# Phase 2: Segmentation
self._process_segmentation(img_infos, zim_predictor, gd_processor, gd_model)
# Phase 3: Inpainting
self._process_inpainting(img_infos, inpaint_model)
# Phase 4: Final Super Resolution
self._process_final_super_resolution(img_infos, sr_model)
# Clear all models from memory after processing
self._clear_models([sr_model, zim_predictor, gd_processor, gd_model, inpaint_model])
def _clear_models(self, models):
"""Clear model weights from memory"""
for model in models:
if hasattr(model, 'cpu'):
model.cpu()
if hasattr(model, 'to'):
model.to('cpu')
torch.cuda.empty_cache()
gc.collect()
def _process_super_resolution(self, img_infos, sr_model):
"""Process initial super-resolution phase"""
for img_info in tqdm(img_infos):
output_path = img_info["output_path"]
self._prepare_output_dir(output_path)
input_path = f"{output_path}/remove_fg2_image.png"
self._run_super_resolution(input_path, output_path, sr_model)
def _process_segmentation(self, img_infos, zim_predictor, gd_processor, gd_model):
"""Process segmentation phase for sky"""
for img_info in tqdm(img_infos):
if self._is_indoor(img_info):
continue
output_path = img_info["output_path"]
img_path = self._get_image_path(
output_path,
["remove_fg2_image.png", "remove_fg1_image.png", "full_image.png"]
)
img_sr_path = img_path.replace(".png", "_sr.png")
seg_utils.get_sky(
output_path, img_path, img_sr_path,
zim_predictor, gd_processor, gd_model, "sky."
)
# Clear memory after segmentation
torch.cuda.empty_cache()
gc.collect()
def _process_inpainting(self, img_infos, inpaint_model):
"""Process inpainting phase for sky"""
for img_info in tqdm(img_infos):
if self._is_indoor(img_info):
continue
base_dir = img_info["output_path"]
if not os.path.exists(os.path.join(base_dir, 'sky_mask.png')):
continue
image = Image.open(self._get_image_path(
base_dir,
["remove_fg2_image.png", "remove_fg1_image.png", "full_image.png"]
)).convert('RGB')
size = image.height, image.width
mask_sharp = Image.open(os.path.join(base_dir, 'sky_mask.png')).convert('L')
mask_smooth = inpaint_utils.get_smooth_mask(np.asarray(mask_sharp))
# Apply edge padding
mask_smooth[:, 0:20] = 1
mask_smooth[:, -20:] = 1
mask_smooth = cv2.resize(mask_smooth, (size[1], size[0]), Image.BILINEAR)
pano_mask_pil = Image.fromarray(mask_smooth*255)
# Sky-specific inpainting parameters
prompt = "sky-coverage, whole sky image, ultra-high definition stratosphere"
negative_prompt = ("object, text, defocus, pure color, low-res, blur, pixelation, foggy, "
"noise, mosaic, artifacts, low-contrast, low-quality, blurry, tree, "
"grass, plant, ground, land, mountain, building, lake, river, sea, ocean")
result = inpaint_model(
prompt=prompt,
negative_prompt=negative_prompt,
image=image,
mask_image=pano_mask_pil,
height=size[0],
width=size[1],
strength=self.params['strength'],
true_cfg_scale=self.params['cfg_scale'],
guidance_scale=20,
num_inference_steps=50,
max_sequence_length=512,
generator=torch.Generator("cpu").manual_seed(self.seed),
).images[0]
result.save(f'{base_dir}/sky_image.png')
# Clear memory after saving result
del image, mask_sharp, mask_smooth, pano_mask_pil, result
torch.cuda.empty_cache()
gc.collect()
def _process_final_super_resolution(self, img_infos, sr_model):
"""Process final super-resolution phase"""
for img_info in tqdm(img_infos):
output_path = img_info["output_path"]
input_path = f"{output_path}/sky_image.png"
self._run_super_resolution(input_path, output_path, sr_model)
# Original functions refactored to use the new pipeline classes
def remove_fg1_pipeline(img_infos, sr_model, zim_predictor, gd_processor, gd_model, inpaint_model, params):
"""Process the first foreground layer (fg1)"""
pipeline = ForegroundPipeline(params, layer=0)
pipeline.process(img_infos, sr_model, zim_predictor, gd_processor, gd_model, inpaint_model)
def remove_fg2_pipeline(img_infos, sr_model, zim_predictor, gd_processor, gd_model, inpaint_model, params):
"""Process the second foreground layer (fg2)"""
pipeline = ForegroundPipeline(params, layer=1)
pipeline.process(img_infos, sr_model, zim_predictor, gd_processor, gd_model, inpaint_model)
def sky_pipeline(img_infos, sr_model, zim_predictor, gd_processor, gd_model, inpaint_model, params):
"""Process the sky layer"""
pipeline = SkyPipeline(params)
pipeline.process(img_infos, sr_model, zim_predictor, gd_processor, gd_model, inpaint_model)
|