HunyuanWorld-Demo / hy3dworld /models /world_composer.py
mooki0's picture
Initial commit of Gradio app
57276d4 verified
import os
import cv2
import json
import numpy as np
from PIL import Image
import open3d as o3d
import torch
from typing import Union, Tuple
from .adaptive_depth_compression import create_adaptive_depth_compressor
from ..utils import (
get_no_fg_img,
get_fg_mask,
get_bg_mask,
get_filtered_mask,
sheet_warping,
depth_match,
seed_all,
build_depth_model,
pred_pano_depth,
)
class WorldComposer:
r"""WorldComposer is responsible for composing a layered world from input images and masks.
It handles foreground object generation, background layer composition, and depth inpainting.
Args:
device (torch.device): The device to run the model on (default: "cuda").
resolution (Tuple[int, int]): The resolution of the input images (width, height).
filter_mask (bool): Whether to filter the foreground masks.
kernel_scale (int): The scale factor for kernel size in mask processing (default: 1).
adaptive_depth_compression (bool): Whether to enable adaptive depth compression (default: True).
seed (int): Random seed for reproducibility.
"""
def __init__(
self,
device: torch.device = "cuda",
resolution: Tuple[int, int] = (3840, 1920),
seed: int = 42,
filter_mask: bool = False,
kernel_scale: int = 1,
adaptive_depth_compression: bool = True,
max_fg_mesh_res: int = 3840,
max_bg_mesh_res: int = 3840,
max_sky_mesh_res: int = 1920,
sky_mask_dilation_kernel: int = 5,
bg_depth_compression_quantile: float = 0.92,
fg_mask_erode_scale: float = 2.5,
fg_filter_beta_scale: float = 3.3,
fg_filter_alpha_scale: float = 0.15,
sky_depth_margin: float = 1.02,
):
r"""Initialize"""
self.device = device
self.resolution = resolution
self.filter_mask = filter_mask
self.kernel_scale = kernel_scale
self.max_fg_mesh_res = max_fg_mesh_res
self.max_bg_mesh_res = max_bg_mesh_res
self.max_sky_mesh_res = max_sky_mesh_res
self.sky_mask_dilation_kernel = sky_mask_dilation_kernel
self.bg_depth_compression_quantile = bg_depth_compression_quantile
self.fg_mask_erode_scale = fg_mask_erode_scale
self.fg_filter_beta_scale = fg_filter_beta_scale
self.fg_filter_alpha_scale = fg_filter_alpha_scale
self.sky_depth_margin = sky_depth_margin
# Adaptive deep compression configuration
self.adaptive_depth_compression = adaptive_depth_compression
self.depth_model = build_depth_model(device)
# Initialize world composition variables
self._init_list()
# init seed
seed_all(seed)
def _init_list(self):
self.layered_world_mesh = []
self.layered_world_depth = []
def _process_input(self, separate_pano, fg_bboxes):
# get all inputs
self.full_img = separate_pano["full_img"]
self.no_fg1_img = separate_pano["no_fg1_img"]
self.no_fg2_img = separate_pano["no_fg2_img"]
self.sky_img = separate_pano["sky_img"]
self.fg1_mask = separate_pano["fg1_mask"]
self.fg2_mask = separate_pano["fg2_mask"]
self.sky_mask = separate_pano["sky_mask"]
self.fg1_bbox = fg_bboxes["fg1_bbox"]
self.fg2_bbox = fg_bboxes["fg2_bbox"]
def _process_sky_mask(self):
r"""Process the sky mask to prepare it for further operations."""
if self.sky_mask is not None:
# The sky mask identifies non-sky regions, so it needs to be inverted.
self.sky_mask = 1 - np.array(self.sky_mask) / 255.0
if len(self.sky_mask.shape) > 2:
self.sky_mask = self.sky_mask[:, :, 0]
# Expand the sky mask to ensure complete coverage.
kernel_size = self.sky_mask_dilation_kernel * self.kernel_scale
self.sky_mask = (
cv2.dilate(
self.sky_mask,
np.ones((kernel_size, kernel_size), np.uint8),
iterations=1,
)
if self.sky_mask.sum() > 0
else self.sky_mask
)
else:
# Create an empty mask if no sky is present.
self.sky_mask = np.zeros((self.H, self.W))
def _process_fg_mask(self, fg_mask):
r"""Process the foreground mask to prepare it for further operations."""
if fg_mask is not None:
fg_mask = np.array(fg_mask)
if len(fg_mask.shape) > 2:
fg_mask = fg_mask[:, :, 0]
return fg_mask
def _load_separate_pano_from_dir(self, image_dir, sr):
r"""Load separate panorama images and foreground bounding boxes from a directory.
Args:
image_dir (str): The directory containing the panorama images and bounding boxes.
sr (bool): Whether to use super-resolution versions of the images.
Returns:
images (dict): A dictionary containing the loaded images with keys:
- "full_img": Complete panorama image (PIL.Image.Image)
- "no_fg1_img": Panorama with layer 1 foreground object removed (PIL.Image.Image)
- "no_fg2_img": Panorama with layer 2 foreground object removed (PIL.Image.Image)
- "sky_img": Sky region image (PIL.Image.Image)
- "fg1_mask": Binary mask for layer 1 foreground object (PIL.Image.Image)
- "fg2_mask": Binary mask for layer 2 foreground object (PIL.Image.Image)
- "sky_mask": Binary mask for sky region (PIL.Image.Image)
fg_bboxes (dict): A dictionary containing bounding boxes for foreground objects with keys:
- "fg1_bbox": List of dicts with keys 'label', 'bbox', 'score' for layer 1 object
- "fg2_bbox": List of dicts with keys 'label', 'bbox', 'score' for layer 2 object
Raises:
FileNotFoundError: If the specified image directory does not exist.
"""
# Define base image files
image_files = {
"full_img": "full_image.png",
"no_fg1_img": "remove_fg1_image.png",
"no_fg2_img": "remove_fg2_image.png",
"sky_img": "sky_image.png",
"fg1_mask": "fg1_mask.png",
"fg2_mask": "fg2_mask.png",
"sky_mask": "sky_mask.png",
}
# Use super-resolution versions if sr flag is set
if sr:
print("***Using super-resolution input image***")
for key in ["full_img", "no_fg1_img", "no_fg2_img", "sky_img"]:
image_files[key] = image_files[key].replace(".png", "_sr.png")
# Check if the directory exists
if not os.path.exists(image_dir):
raise FileNotFoundError(f"The image directory does not exist: {image_dir}")
# Load and adjust all images
images = {}
fg1_bbox_scale = 1
fg2_bbox_scale = 1
for name, filename in image_files.items():
filepath = os.path.join(image_dir, filename)
if not os.path.exists(filepath):
images[name] = None
else:
img = Image.open(filepath)
if img.size != self.resolution:
print(
f"Transform the image {name} from {img.size} rescale to {self.resolution}"
)
# Select different resampling methods based on image type
resample = Image.NEAREST if "mask" in name else Image.BICUBIC
if "fg1_mask" in name and img.size != self.resolution:
fg1_bbox_scale = self.resolution[0] / img.size[0]
if "fg2_mask" in name and img.size != self.resolution:
fg2_bbox_scale = self.resolution[0] / img.size[0]
img = img.resize(self.resolution, resample=resample)
images[name] = img
# Check resolution
if self.resolution is not None:
for name, img in images.items():
if img is not None:
assert (
img.size == self.resolution
), f"{name} resolution does not match"
# Load foreground object bbox
fg_bboxes = {}
fg_bbox_files = {
"fg1_bbox": "fg1.json",
"fg2_bbox": "fg2.json",
}
for name, filename in fg_bbox_files.items():
filepath = os.path.join(image_dir, filename)
if not os.path.exists(filepath):
fg_bboxes[name] = None
else:
fg_bboxes[name] = json.load(open(filepath))
if "fg1" in name:
for i in range(len(fg_bboxes[name]["bboxes"])):
fg_bboxes[name]["bboxes"][i]["bbox"] = [
x * fg1_bbox_scale
for x in fg_bboxes[name]["bboxes"][i]["bbox"]
]
if "fg2" in name:
for i in range(len(fg_bboxes[name]["bboxes"])):
fg_bboxes[name]["bboxes"][i]["bbox"] = [
x * fg2_bbox_scale
for x in fg_bboxes[name]["bboxes"][i]["bbox"]
]
return images, fg_bboxes
def generate_world(self, **kwargs):
r"""Generate a 3D world composition from panorama and foreground objects
Args:
**kwargs: Additional keyword arguments containing:
separate_pano (np.ndarray):
Panorama image split into separate cubemap faces [6, H, W, C]
fg_bboxes (List[Dict]):
List of foreground object bounding boxes
world_type (str):
World generation mode:
- 'mesh': export mesh
Returns:
Tuple: A tuple containing:
world (np.ndarray):
Rendered 3D world view [H,W,3] in RGB format
layered_world_depth (np.ndarray):
Depth map of the composition [H,W]
with values in [0,1] range (1=far)
generated_fg_objects (List[Dict]):
Processed foreground objects
"""
# temporary input setting
separate_pano = kwargs["separate_pano"]
fg_bboxes = kwargs["fg_bboxes"]
world_type = kwargs["world_type"]
layered_world_mesh = self._compose_layered_world(
separate_pano, fg_bboxes, world_type=world_type
)
return layered_world_mesh
def _compose_background_layer(self):
r"""Compose the background layer of the world."""
# The background layer is composed of the full image without foreground objects.
if self.BG_MASK.sum() == 0:
return
print(f"🏞️ Composing the background layer...")
if self.fg_status == "no_fg":
self.no_fg_img_depth = self.full_img_depth
else:
# For cascade inpainting, use the last layer's depth as known depth.
if self.fg_status == "both_fg1_fg2":
inpaint_mask = self.fg2_mask.astype(np.bool_).astype(np.uint8)
else:
inpaint_mask = self.FG_MASK
# Align the depth of the background layer to the depth of the panoramic image
self.no_fg_img_depth = pred_pano_depth(
self.depth_model,
self.no_fg_img,
img_name="background",
last_layer_mask=inpaint_mask,
last_layer_depth=self.layered_world_depth[-1],
)
self.no_fg_img_depth = depth_match(
self.full_img_depth, self.no_fg_img_depth, self.BG_MASK
)
# Apply adaptive depth compression considering foreground layers and scene characteristics
distance = self.no_fg_img_depth["distance"]
if (
hasattr(self, "adaptive_depth_compression")
and self.adaptive_depth_compression
):
# Automatically determine scene type based on sky_img
scene_type = "indoor" if self.sky_img is None else "outdoor"
depth_compressor = create_adaptive_depth_compressor(scene_type=scene_type)
self.no_fg_img_depth["distance"] = (
depth_compressor.compress_background_depth(
distance, self.layered_world_depth, bg_mask=1 - self.sky_mask
)
)
else:
# Use a simple quantile-based depth compression method.
q_val = torch.quantile(distance, self.bg_depth_compression_quantile)
self.no_fg_img_depth["distance"] = torch.clamp(distance, max=q_val)
layer_depth_i = self.no_fg_img_depth.copy()
layer_depth_i["name"] = "background"
layer_depth_i["mask"] = 1 - self.sky_mask
layer_depth_i["type"] = "bg"
self.layered_world_depth.append(layer_depth_i)
if "mesh" in self.world_type:
no_fg_img_mesh = sheet_warping(
self.no_fg_img_depth,
excluded_region_mask=torch.from_numpy(self.sky_mask).bool(),
max_size=self.max_bg_mesh_res,
)
self.layered_world_mesh.append({"type": "bg", "mesh": no_fg_img_mesh})
def _compose_foreground_layer(self):
if self.fg_status == "no_fg":
return
print(f"🧩 Composing the foreground layers...")
# Obtain the list of foreground layers
fg_layer_list = []
if self.fg_status == "both_fg1_fg2":
fg_layer_list.append(
[self.full_img, self.fg1_mask, self.fg1_bbox, "fg1"]
) # fg1 mesh
fg_layer_list.append(
[self.no_fg1_img, self.fg2_mask, self.fg2_bbox, "fg2"]
) # fg2 mesh
elif self.fg_status == "only_fg1":
fg_layer_list.append(
[self.full_img, self.fg1_mask, self.fg1_bbox, "fg1"]
) # fg1 mesh
elif self.fg_status == "only_fg2":
fg_layer_list.append(
[self.no_fg1_img, self.fg2_mask, self.fg2_bbox, "fg2"]
) # fg2 mesh
# Determine whether to generate foreground objects or directly project foreground layers
project_object_layer = ["fg1", "fg2"]
for fg_i_img, fg_i_mask, fg_i_bbox, fg_i_type in fg_layer_list:
print(f"\t - Composing the foreground layer: {fg_i_type}")
# 1. Estimate the depth of the foreground layer
# If there are fg1 and fg2, then fg1_img is the panoramic image itself, without the need to estimate depth
if len(fg_layer_list) > 1:
if fg_i_type == "fg1":
fg_i_img_depth = self.full_img_depth
elif fg_i_type == "fg2":
fg_i_img_depth = pred_pano_depth(
self.depth_model,
fg_i_img,
img_name=f"{fg_i_type}",
last_layer_mask=self.fg1_mask.astype(np.bool_).astype(np.uint8),
last_layer_depth=self.full_img_depth,
)
# fg2 only needs to align the depth of the fg2 object area
fg2_exclude_fg1_mask = np.logical_and(
fg_i_mask.astype(np.bool_), 1 - self.fg1_mask.astype(np.bool_)
)
# Align the depth of the foreground layer to the depth of the panoramic image
fg_i_img_depth = depth_match(
self.full_img_depth, fg_i_img_depth, fg2_exclude_fg1_mask
)
else:
raise ValueError(f"Invalid foreground object type: {fg_i_type}")
else:
# If only fg1 or fg2 exists, its image is the panoramic image, so depth estimation is not required.
fg_i_img_depth = self.full_img_depth
# Compress outliers in the foreground depth.
if (
hasattr(self, "adaptive_depth_compression")
and self.adaptive_depth_compression
):
depth_compressor = create_adaptive_depth_compressor()
fg_i_img_depth["distance"] = depth_compressor.compress_foreground_depth(
fg_i_img_depth["distance"], fg_i_mask
)
in_fg_i_mask = fg_i_mask.copy()
if fg_i_mask.sum() > 0:
# 2. Perform sheet warping.
if fg_i_type in project_object_layer:
in_fg_i_mask = self._project_fg_depth(
fg_i_img_depth, fg_i_mask, fg_i_type
)
else:
raise ValueError(f"Invalid foreground object type: {fg_i_type}")
else:
# If no objects are in the foreground layer, it won't be added to the layered world depth.
pass
# save layered depth
layer_depth_i = fg_i_img_depth.copy()
layer_depth_i["name"] = fg_i_type
# Using edge filtered masks to ensure the accuracy of foreground depth during depth compression
layer_depth_i["mask"] = (
in_fg_i_mask if in_fg_i_mask is not None else np.zeros_like(fg_i_mask)
)
layer_depth_i["type"] = fg_i_type
self.layered_world_depth.append(layer_depth_i)
def _project_fg_depth(self, fg_i_img_depth, fg_i_mask, fg_i_type):
r"""Project the foreground depth to create a mesh or Gaussian splatting object."""
in_fg_i_mask = fg_i_mask.astype(np.bool_).astype(
np.uint8
)
# Erode the mask to remove edge artifacts from foreground objects.
erode_size = int(self.fg_mask_erode_scale * self.kernel_scale)
eroded_in_fg_i_mask = cv2.erode(
in_fg_i_mask, np.ones((erode_size, erode_size), np.uint8), iterations=1
) # The result is a uint8 array with values of 0 or 1.
# Filter edges
if self.filter_mask:
filtered_fg_i_img_mask = (
1
- get_filtered_mask(
1.0 / fg_i_img_depth["distance"][None, :, :, None],
beta=self.fg_filter_beta_scale * self.kernel_scale,
alpha_threshold=self.fg_filter_alpha_scale * self.kernel_scale,
device=self.device,
)
.squeeze()
.cpu()
)
# Convert to binary mask
filtered_fg_i_img_mask = 1 - filtered_fg_i_img_mask.numpy()
# Combine eroded mask with filtered mask
eroded_in_fg_i_mask = np.logical_and(
eroded_in_fg_i_mask, filtered_fg_i_img_mask
)
# Process the eroded mask to create the final binary mask
in_fg_i_mask = eroded_in_fg_i_mask > 0.5
out_fg_i_mask = 1 - in_fg_i_mask
# Convert the depth image to a mesh or Gaussian splatting object
if "mesh" in self.world_type:
fg_i_mesh = sheet_warping(
fg_i_img_depth,
excluded_region_mask=torch.from_numpy(out_fg_i_mask).bool(),
max_size=self.max_fg_mesh_res,
)
self.layered_world_mesh.append({"type": fg_i_type, "mesh": fg_i_mesh})
return in_fg_i_mask
def _compose_sky_layer(self):
r"""Compose the sky layer of the world."""
if self.sky_img is not None:
print(f"πŸ• Composing the sky layer...")
self.sky_img = torch.tensor(
np.array(self.sky_img), device=self.full_img_depth["rgb"].device
)
# Calculate the maximum depth value of all foreground and background layers
max_scene_depth = torch.tensor(
0.0, device=self.full_img_depth["rgb"].device
)
for layer in self.layered_world_depth:
layer_depth = layer["distance"]
layer_mask = layer.get("mask", None)
if layer_mask is not None:
if not isinstance(layer_mask, torch.Tensor):
layer_mask = torch.from_numpy(layer_mask).to(layer_depth.device)
mask_bool = layer_mask.bool()
if (
mask_bool.sum() > 0
): # Only search for the maximum value within the mask area
layer_max = layer_depth[mask_bool].max()
max_scene_depth = torch.max(max_scene_depth, layer_max)
else:
# If there is no mask, consider the entire depth map
max_scene_depth = torch.max(max_scene_depth, layer_depth.max())
# Set the sky depth to be slightly greater than the maximum scene depth.
sky_distance = self.sky_depth_margin * max_scene_depth if max_scene_depth > 0 else 3.0
sky_pred = {
"rgb": self.sky_img,
"rays": self.full_img_depth["rays"],
"distance": sky_distance
* torch.ones_like(self.full_img_depth["distance"]),
}
if "mesh" in self.world_type:
# The sky doesn't need smooth edges with jagged edges
sky_mesh = sheet_warping(
sky_pred,
connect_boundary_max_dist=None,
max_size=self.max_sky_mesh_res,
)
self.layered_world_mesh.append({"type": "sky", "mesh": sky_mesh})
def _compose_layered_world(
self,
separate_pano: dict,
fg_bboxes: dict,
world_type: list = ["mesh"],
) -> Union[o3d.geometry.TriangleMesh]:
r"""
Compose each layer into a complete world
Args:
separate_pano: dict containing the following images:
full_img: Complete panorama image (PIL.Image.Image)
no_fg1_img: Panorama with layer 1 foreground object removed (PIL.Image.Image)
no_fg2_img: Panorama with layer 2 foreground object removed (PIL.Image.Image)
sky_img: Sky region image (PIL.Image.Image)
fg1_mask: Binary mask for layer 1 foreground object (PIL.Image.Image)
fg2_mask: Binary mask for layer 2 foreground object (PIL.Image.Image)
sky_mask: Binary mask for sky region (PIL.Image.Image)
fg_bboxes: dict containing bounding boxes for foreground objects:
fg1_bbox: List of dicts with keys 'label', 'bbox', 'score' for layer 1 object
fg2_bbox: List of dicts with keys 'label', 'bbox', 'score' for layer 2 object
world_type: list, ["mesh"]
filter_mask: bool, whether to filter the mask
Returns:
layered_world: dict containing the following:
mesh: list of o3d.geometry.TriangleMesh
objects: list of ImageWithOneObject
"""
self.world_type = world_type
self._process_input(separate_pano, fg_bboxes)
self.W, self.H = self.full_img.size
self._init_list()
# Processing sky and foreground masks
self._process_sky_mask()
self.fg1_mask = self._process_fg_mask(self.fg1_mask)
self.fg2_mask = self._process_fg_mask(self.fg2_mask)
# Overall foreground mask: Merge multiple foreground masks, background mask: Excluding sky
self.FG_MASK = get_fg_mask(self.fg1_mask, self.fg2_mask)
self.BG_MASK = get_bg_mask(self.sky_mask, self.FG_MASK, self.kernel_scale)
# Obtain background+sky layer (no_fg_img
self.no_fg_img, self.fg_status = get_no_fg_img(
self.no_fg1_img, self.no_fg2_img, self.full_img
)
# Predicting the Depth of Panoramic Images
self.full_img_depth = pred_pano_depth( # fg1 depth
self.depth_model,
self.full_img,
img_name="full_img",
)
# Layered construction of the world
print(f"🎨 Start to compose the world layer by layer...")
# 1. The foreground layers
self._compose_foreground_layer()
# 2. The background layers
self._compose_background_layer()
# 3. The sky layers
self._compose_sky_layer()
print("πŸŽ‰ Congratulations! World composition completed successfully!")
return self.layered_world_mesh