HunyuanWorld-Demo / hy3dworld /utils /general_utils.py
mooki0's picture
Initial commit of Gradio app
57276d4 verified
import cv2
import numpy as np
from typing import Optional, Literal
import random
import matplotlib
import open3d as o3d
import torch
import torch.nn.functional as F
from collections import defaultdict
def spherical_uv_to_directions(uv: np.ndarray):
r"""
Convert spherical UV coordinates to 3D directions.
Args:
uv (np.ndarray): UV coordinates in the range [0, 1]. Shape: (H, W, 2).
Returns:
directions (np.ndarray): 3D directions corresponding to the UV coordinates. Shape: (H, W, 3).
"""
theta, phi = (1 - uv[..., 0]) * (2 * np.pi), uv[..., 1] * np.pi
directions = np.stack([np.sin(phi) * np.cos(theta),
np.sin(phi) * np.sin(theta), np.cos(phi)], axis=-1)
return directions
def depth_match(init_pred: dict, bg_pred: dict, mask: np.ndarray, quantile: float = 0.3) -> dict:
r"""
Match the background depth map to the scale of the initial depth map.
Args:
init_pred (dict): Initial depth prediction containing "distance" key.
bg_pred (dict): Background depth prediction containing "distance" key.
mask (np.ndarray): Binary mask indicating valid pixels in the background depth map.
quantile (float): Quantile to use for selecting the depth range for scale matching.
Returns:
bg_pred (dict): Background depth prediction with adjusted "distance" key.
"""
valid_mask = mask > 0
init_distance = init_pred["distance"][valid_mask]
bg_distance = bg_pred["distance"][valid_mask]
init_mask = init_distance < torch.quantile(init_distance, quantile)
bg_mask = bg_distance < torch.quantile(bg_distance, quantile)
scale = init_distance[init_mask].median() / bg_distance[bg_mask].median()
bg_pred["distance"] *= scale
return bg_pred
def _fill_small_boundary_spikes(
mesh: o3d.geometry.TriangleMesh,
max_bridge_dist: float,
repeat_times: int = 3,
max_connection_step: int = 8,
) -> o3d.geometry.TriangleMesh:
r"""
Fill small boundary spikes in a mesh by creating triangles between boundary vertices.
Args:
mesh (o3d.geometry.TriangleMesh): The input mesh to process.
max_bridge_dist (float): Maximum distance allowed for bridging boundary vertices.
repeat_times (int): Number of iterations to repeat the filling process.
max_connection_step (int): Maximum number of steps to connect boundary vertices.
Returns:
o3d.geometry.TriangleMesh: The mesh with small boundary spikes filled.
"""
for iteration in range(repeat_times):
if not mesh.has_triangles() or not mesh.has_vertices():
return mesh
vertices = np.asarray(mesh.vertices)
triangles = np.asarray(mesh.triangles)
# 1. Identify boundary edges
edge_to_triangle_count = defaultdict(int)
for tri_idx, tri in enumerate(triangles):
for i in range(3):
v1_idx, v2_idx = tri[i], tri[(i + 1) % 3]
edge = tuple(sorted((v1_idx, v2_idx)))
edge_to_triangle_count[edge] += 1
boundary_edges = [edge for edge,
count in edge_to_triangle_count.items() if count == 1]
if not boundary_edges:
return mesh
# 2. Create an adjacency list for boundary vertices using only boundary edges
boundary_adj = defaultdict(list)
for v1_idx, v2_idx in boundary_edges:
boundary_adj[v1_idx].append(v2_idx)
boundary_adj[v2_idx].append(v1_idx)
# 3. Process boundary vertices with new smooth filling algorithm
new_triangles_list = []
edge_added = defaultdict(bool)
# print(f"DEBUG: Found {len(boundary_edges)} boundary edges.")
# print(f"DEBUG: Max bridge distance set to: {max_bridge_dist}")
new_triangles_added_count = 0
for v_curr_idx, neighbors in boundary_adj.items():
if len(neighbors) != 2: # Only process vertices with exactly 2 boundary neighbors
continue
v_a_idx, v_b_idx = neighbors[0], neighbors[1]
# Skip if these vertices already form a triangle
potential_edge = tuple(sorted((v_a_idx, v_b_idx)))
if edge_to_triangle_count[potential_edge] > 0 or edge_added[potential_edge]:
continue
# Calculate distances
v_curr_coord = vertices[v_curr_idx]
v_a_coord = vertices[v_a_idx]
v_b_coord = vertices[v_b_idx]
dist_a_b = np.linalg.norm(v_a_coord - v_b_coord)
# Skip if distance exceeds threshold
if dist_a_b > max_bridge_dist:
continue
# Create simple triangle (v_a, v_b, v_curr)
new_triangles_list.append([v_a_idx, v_b_idx, v_curr_idx])
new_triangles_added_count += 1
edge_added[potential_edge] = True
# Mark edges as processed
edge_added[tuple(sorted((v_curr_idx, v_a_idx)))] = True
edge_added[tuple(sorted((v_curr_idx, v_b_idx)))] = True
# 4. Now process multi-step connections for better smoothing
# First build boundary chains for multi-step connections
boundary_loops = []
visited_vertices = set()
# Find boundary vertices with exactly 2 neighbors (part of continuous chains)
chain_starts = [v for v in boundary_adj if len(
boundary_adj[v]) == 2 and v not in visited_vertices]
for start_vertex in chain_starts:
if start_vertex in visited_vertices:
continue
chain = []
curr_vertex = start_vertex
# Follow the chain in one direction
while curr_vertex not in visited_vertices:
visited_vertices.add(curr_vertex)
chain.append(curr_vertex)
next_candidates = [
n for n in boundary_adj[curr_vertex] if n not in visited_vertices]
if not next_candidates:
break
curr_vertex = next_candidates[0]
if len(chain) >= 3:
boundary_loops.append(chain)
# Process each boundary chain for multi-step smoothing
for chain in boundary_loops:
chain_length = len(chain)
# Skip very small chains
if chain_length < 3:
continue
# Compute multi-step connections
max_step = min(max_connection_step, chain_length - 1)
for i in range(chain_length):
anchor_idx = chain[i]
anchor_coord = vertices[anchor_idx]
for step in range(3, max_step + 1):
if i + step >= chain_length:
break
far_idx = chain[i + step]
far_coord = vertices[far_idx]
# Check distance criteria
dist_anchor_far = np.linalg.norm(anchor_coord - far_coord)
if dist_anchor_far > max_bridge_dist * step:
continue
# Check if anchor and far are already connected
edge_anchor_far = tuple(sorted((anchor_idx, far_idx)))
if edge_to_triangle_count[edge_anchor_far] > 0 or edge_added[edge_anchor_far]:
continue
# Create fan triangles
fan_valid = True
fan_triangles = []
prev_mid_idx = anchor_idx
for j in range(1, step):
mid_idx = chain[i + j]
if prev_mid_idx != anchor_idx:
tri_edge1 = tuple(sorted((anchor_idx, mid_idx)))
tri_edge2 = tuple(sorted((prev_mid_idx, mid_idx)))
# Check if edges already exist (not created by our fan)
if (edge_to_triangle_count[tri_edge1] > 0 and not edge_added[tri_edge1]) or \
(edge_to_triangle_count[tri_edge2] > 0 and not edge_added[tri_edge2]):
fan_valid = False
break
fan_triangles.append(
[anchor_idx, prev_mid_idx, mid_idx])
prev_mid_idx = mid_idx
# Add final triangle to connect to far_idx
if fan_valid:
fan_triangles.append(
[anchor_idx, prev_mid_idx, far_idx])
# Add all fan triangles if valid
if fan_valid and fan_triangles:
for triangle in fan_triangles:
v_a, v_b, v_c = triangle
edge_ab = tuple(sorted((v_a, v_b)))
edge_bc = tuple(sorted((v_b, v_c)))
edge_ac = tuple(sorted((v_a, v_c)))
new_triangles_list.append(triangle)
new_triangles_added_count += 1
edge_added[edge_ab] = True
edge_added[edge_bc] = True
edge_added[edge_ac] = True
# Once we've added a fan, move to the next anchor
break
if new_triangles_added_count == 0:
break
# Update the mesh with new triangles
if new_triangles_list:
all_triangles_np = np.vstack(
(triangles, np.array(new_triangles_list, dtype=np.int32)))
final_mesh = o3d.geometry.TriangleMesh()
final_mesh.vertices = o3d.utility.Vector3dVector(vertices)
final_mesh.triangles = o3d.utility.Vector3iVector(all_triangles_np)
if mesh.has_vertex_colors():
final_mesh.vertex_colors = mesh.vertex_colors
# Clean up the mesh
final_mesh.remove_degenerate_triangles()
final_mesh.remove_unreferenced_vertices()
mesh = final_mesh
return mesh
def pano_sheet_warping(
rgb: torch.Tensor, # (H, W, 3) RGB image, values [0, 1]
distance: torch.Tensor, # (H, W) Distance map
rays: torch.Tensor, # (H, W, 3) Ray directions (unit vectors ideally)
# (H, W) Optional boolean mask
excluded_region_mask: Optional[torch.Tensor] = None,
max_size: int = 4096, # Max dimension for resizing
device: Literal["cuda", "cpu"] = "cuda", # Computation device
# Max distance to bridge boundary vertices
connect_boundary_max_dist: Optional[float] = 0.5,
connect_boundary_repeat_times: int = 2
) -> o3d.geometry.TriangleMesh:
r"""
Converts panoramic RGBD data (image, distance, rays) into an Open3D mesh.
Args:
image: Input RGB image tensor (H, W, 3), uint8 or float [0, 255].
distance: Input distance map tensor (H, W).
rays: Input ray directions tensor (H, W, 3). Assumed to originate from (0,0,0).
excluded_region_mask: Optional boolean mask tensor (H, W). True values indicate regions to potentially exclude.
max_size: Maximum size (height or width) to resize inputs to.
device: The torch device ('cuda' or 'cpu') to use for computations.
Returns:
An Open3D TriangleMesh object.
"""
assert rgb.ndim == 3 and rgb.shape[2] == 3, "Image must be HxWx3"
assert distance.ndim == 2, "Distance must be HxW"
assert rays.ndim == 3 and rays.shape[2] == 3, "Rays must be HxWx3"
assert (
rgb.shape[:2] == distance.shape[:2] == rays.shape[:2]
), "Input shapes must match"
mask = excluded_region_mask
if mask is not None:
assert (
mask.ndim == 2 and mask.shape[:2] == rgb.shape[:2]
), "Mask shape must match"
assert mask.dtype == torch.bool, "Mask must be a boolean tensor"
rgb = rgb.to(device)
distance = distance.to(device)
rays = rays.to(device)
if mask is not None:
mask = mask.to(device)
H, W = distance.shape
if max(H, W) > max_size:
scale = max_size / max(H, W)
else:
scale = 1.0
# --- Resize Inputs ---
rgb_nchw = rgb.permute(2, 0, 1).unsqueeze(0)
distance_nchw = distance.unsqueeze(0).unsqueeze(0)
rays_nchw = rays.permute(2, 0, 1).unsqueeze(0)
rgb_resized = (
F.interpolate(
rgb_nchw,
scale_factor=scale,
mode="bilinear",
align_corners=False,
recompute_scale_factor=False,
)
.squeeze(0)
.permute(1, 2, 0)
)
distance_resized = (
F.interpolate(
distance_nchw,
scale_factor=scale,
mode="bilinear",
align_corners=False,
recompute_scale_factor=False,
)
.squeeze(0)
.squeeze(0)
)
rays_resized_nchw = F.interpolate(
rays_nchw,
scale_factor=scale,
mode="bilinear",
align_corners=False,
recompute_scale_factor=False,
)
# IMPORTANT: Renormalize ray directions after interpolation
rays_resized = rays_resized_nchw.squeeze(0).permute(1, 2, 0)
rays_norm = torch.linalg.norm(rays_resized, dim=-1, keepdim=True)
rays_resized = rays_resized / (rays_norm + 1e-8)
if mask is not None:
mask_resized = (
F.interpolate(
# Needs float for interpolation
mask.unsqueeze(0).unsqueeze(0).float(),
scale_factor=scale,
mode="nearest", # Or 'nearest' if sharp boundaries are critical
# align_corners=False,
recompute_scale_factor=False,
)
.squeeze(0)
.squeeze(0)
)
mask_resized = mask_resized > 0.5 # Convert back to boolean
else:
mask_resized = None
H_new, W_new = distance_resized.shape # Get new dimensions
# --- Calculate 3D Vertices ---
# Vertex position = origin + distance * ray_direction
# Assuming origin is (0, 0, 0)
distance_flat = distance_resized.reshape(-1, 1) # (H*W, 1)
rays_flat = rays_resized.reshape(-1, 3) # (H*W, 3)
vertices = distance_flat * rays_flat # (H*W, 3)
vertex_colors = rgb_resized.reshape(-1, 3) # (H*W, 3)
# --- Generate Mesh Faces (Triangles from Quads) ---
# Vectorized approach for generating faces, including seam connection
# Rows for the top of quads
row_indices = torch.arange(0, H_new - 1, device=device)
# Columns for the left of quads (includes last col for wrapping)
col_indices = torch.arange(0, W_new, device=device)
# Create 2D grids of row and column coordinates for quad corners
# These represent the (row, col) of the top-left vertex of each quad
# Shape: (H_new-1, W_new)
quad_row_coords = row_indices.view(-1, 1).expand(-1, W_new)
quad_col_coords = col_indices.view(
1, -1).expand(H_new-1, -1) # Shape: (H_new-1, W_new)
# Top-left vertex indices
tl_row, tl_col = quad_row_coords, quad_col_coords
# Top-right vertex indices (with wrap-around)
tr_row, tr_col = quad_row_coords, (quad_col_coords + 1) % W_new
# Bottom-left vertex indices
bl_row, bl_col = (quad_row_coords + 1), quad_col_coords
# Bottom-right vertex indices (with wrap-around)
br_row, br_col = (quad_row_coords + 1), (quad_col_coords + 1) % W_new
# Convert 2D (row, col) coordinates to 1D vertex indices
tl = tl_row * W_new + tl_col
tr = tr_row * W_new + tr_col
bl = bl_row * W_new + bl_col
br = br_row * W_new + br_col
# Apply mask if provided
if mask_resized is not None:
# Get mask values for each corner of the quads
mask_tl_vals = mask_resized[tl_row, tl_col]
mask_tr_vals = mask_resized[tr_row, tr_col]
mask_bl_vals = mask_resized[bl_row, bl_col]
mask_br_vals = mask_resized[br_row, br_col]
# A quad is kept if none of its vertices are masked
# Shape: (H_new-1, W_new)
quad_keep_mask = ~(mask_tl_vals | mask_tr_vals |
mask_bl_vals | mask_br_vals)
# Filter vertex indices based on the keep mask
tl = tl[quad_keep_mask] # Result is flattened
tr = tr[quad_keep_mask]
bl = bl[quad_keep_mask]
br = br[quad_keep_mask]
else:
# If no mask, flatten all potential quads' vertex indices
tl = tl.flatten()
tr = tr.flatten()
bl = bl.flatten()
br = br.flatten()
# Create triangles (two per quad)
# Using the same winding order as before: (tl, tr, bl) and (tr, br, bl)
tri1 = torch.stack([tl, tr, bl], dim=1)
tri2 = torch.stack([tr, br, bl], dim=1)
faces = torch.cat([tri1, tri2], dim=0)
mesh_o3d = o3d.geometry.TriangleMesh()
mesh_o3d.vertices = o3d.utility.Vector3dVector(vertices.cpu().numpy())
mesh_o3d.triangles = o3d.utility.Vector3iVector(faces.cpu().numpy())
mesh_o3d.vertex_colors = o3d.utility.Vector3dVector(
vertex_colors.cpu().numpy())
mesh_o3d.remove_unreferenced_vertices()
mesh_o3d.remove_degenerate_triangles()
if connect_boundary_max_dist is not None and connect_boundary_max_dist > 0:
mesh_o3d = _fill_small_boundary_spikes(
mesh_o3d, connect_boundary_max_dist, connect_boundary_repeat_times)
# Recompute normals after potential modification, if mesh still valid
if mesh_o3d.has_triangles() and mesh_o3d.has_vertices():
mesh_o3d.compute_vertex_normals()
# Also computes triangle normals if vertex normals are computed
mesh_o3d.compute_triangle_normals()
return mesh_o3d
def get_no_fg_img(no_fg1_img, no_fg2_img, full_img):
r"""Get the image without foreground objects based on available inputs.
Args:
no_fg1_img: Image with foreground layer 1 removed
no_fg2_img: Image with foreground layer 2 removed
full_img: Original full image
Returns:
Image without foreground objects, defaulting to full image if no fg-removed images available
"""
fg_status = None
if no_fg1_img is not None and no_fg2_img is not None:
no_fg_img = no_fg2_img
fg_status = "both_fg1_fg2"
elif no_fg1_img is not None and no_fg2_img is None:
no_fg_img = no_fg1_img
fg_status = "only_fg1"
elif no_fg1_img is None and no_fg2_img is not None:
no_fg_img = no_fg2_img
fg_status = "only_fg2"
else:
no_fg_img = full_img
fg_status = "no_fg"
assert fg_status is not None
return no_fg_img, fg_status
def get_fg_mask(fg1_mask, fg2_mask):
r"""
Combine foreground masks from two layers.
Args:
fg1_mask: Foreground mask for layer 1
fg2_mask: Foreground mask for layer 2
Returns:
Combined foreground mask, or None if both are None
"""
if fg1_mask is not None and fg2_mask is not None:
fg_mask = np.logical_or(fg1_mask, fg2_mask)
elif fg1_mask is not None:
fg_mask = fg1_mask
elif fg2_mask is not None:
fg_mask = fg2_mask
else:
fg_mask = None
if fg_mask is not None:
fg_mask = fg_mask.astype(np.bool_).astype(np.uint8)
return fg_mask
def get_bg_mask(sky_mask, fg_mask, kernel_scale, dilation_kernel_size: int = 3):
r"""
Generate background mask based on sky and foreground masks.
Args:
sky_mask: Sky mask (boolean array)
fg_mask: Foreground mask (boolean array)
kernel_scale: Scale factor for the kernel size
dilation_kernel_size: The size of the dilation kernel.
Returns:
Background mask as a boolean array, where True indicates background pixels.
"""
kernel_size = dilation_kernel_size * kernel_scale
if fg_mask is not None:
bg_mask = np.logical_and(
(1 - cv2.dilate(fg_mask,
np.ones((kernel_size, kernel_size), np.uint8), iterations=1)),
(1 - sky_mask),
).astype(np.uint8)
else:
bg_mask = 1 - sky_mask
return bg_mask
def get_filtered_mask(disparity, beta=100, alpha_threshold=0.3, device="cuda"):
"""
filter the disparity map using sobel kernel, then mask out the edge (depth discontinuity)
Args:
disparity: Disparity map in BHWC format, shape [b, h, w, 1]
beta: Exponential decay factor for the Sobel magnitude
alpha_threshold: Threshold for visibility mask
device: Device to perform computations on, either 'cuda' or 'cpu'
Returns:
vis_mask: Visibility mask in BHWC format, shape [b, h, w, 1]
"""
b, h, w, _ = disparity.size()
# Permute to NCHW format: [b, 1, h, w]
disparity_nchw = disparity.permute(0, 3, 1, 2)
# Pad H and W dimensions with replicate padding
disparity_padded = F.pad(
disparity_nchw, (2, 2, 2, 2), mode="replicate"
) # Pad last two dims (W, H), [b, 1, h+4, w+4]
kernel_x = (
torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])
.unsqueeze(0)
.unsqueeze(0)
.float()
.to(device)
)
kernel_y = (
torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]])
.unsqueeze(0)
.unsqueeze(0)
.float()
.to(device)
)
# Apply Sobel filters
sobel_x = F.conv2d(
disparity_padded, kernel_x, padding=(1, 1)
) # Output: [b, 1, h+4, w+4] # Corrected padding
sobel_y = F.conv2d(
disparity_padded, kernel_y, padding=(1, 1)
) # Output: [b, 1, h+4, w+4] # Corrected padding
# Calculate magnitude
sobel_mag_padded = torch.sqrt(
sobel_x**2 + sobel_y**2
) # Shape: [b, 1, h+4, w+4]
# Remove padding
sobel_mag = sobel_mag_padded[
:, :, 2:-2, 2:-2
] # Shape: [b, 1, h, w] # Adjusted slicing
# Calculate alpha and mask
alpha = torch.exp(-1.0 * beta * sobel_mag) # Shape: [b, 1, h, w]
vis_mask_nchw = torch.greater(alpha, alpha_threshold).float()
# Permute back to BHWC format: [b, h, w, 1]
vis_mask = vis_mask_nchw.permute(0, 2, 3, 1)
assert vis_mask.shape == disparity.shape # Ensure output shape matches input
return vis_mask
def sheet_warping(
predictions, excluded_region_mask=None,
connect_boundary_max_dist=0.5,
connect_boundary_repeat_times=2,
max_size=4096,
) -> o3d.geometry.TriangleMesh:
r"""
Convert depth predictions to a 3D mesh.
Args:
predictions: Dictionary containing:
- "rgb": RGB image tensor of shape (H, W, 3) with
values in [0, 255] (uint8) or [0, 1] (float).
- "distance": Distance map tensor of shape (H, W).
- "rays": Ray directions tensor of shape (H, W, 3).
excluded_region_mask: Optional boolean mask tensor of shape (H, W).
connect_boundary_max_dist: Maximum distance to bridge boundary vertices.
connect_boundary_repeat_times: Number of iterations to repeat the boundary connection.
max_size: Maximum size (height or width) to resize inputs to.
Returns:
An Open3D TriangleMesh object.
"""
rgb = predictions["rgb"] / 255.0
distance = predictions["distance"]
rays = predictions["rays"]
mesh = pano_sheet_warping(
rgb,
distance,
rays,
excluded_region_mask,
connect_boundary_max_dist=connect_boundary_max_dist,
connect_boundary_repeat_times=connect_boundary_repeat_times,
max_size=max_size
)
return mesh
def seed_all(seed: int = 0):
r"""
Set random seeds of all components.
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def colorize_depth_maps(
depth: np.ndarray,
mask: np.ndarray = None,
normalize: bool = True,
cmap: str = 'Spectral'
) -> np.ndarray:
r"""
Colorize depth maps using a colormap.
Args:
depth (np.ndarray): Depth map to colorize, shape (H, W).
mask (np.ndarray, optional): Optional mask to apply to the depth map, shape (H, W).
normalize (bool): Whether to normalize the depth values before colorization.
cmap (str): Name of the colormap to use.
Returns:
np.ndarray: Colorized depth map, shape (H, W, 3).
"""
# moge vis function
if mask is None:
depth = np.where(depth > 0, depth, np.nan)
else:
depth = np.where((depth > 0) & mask, depth, np.nan)
# Convert depth to disparity (inverse of depth)
disp = 1 / depth # Closer objects have higher disparity values
# Set invalid disparity values to the 0.1% quantile (avoids extreme outliers)
if mask is not None:
disp[~((depth > 0) & mask)] = np.nanquantile(disp, 0.001)
# Normalize disparity values to [0,1] range if requested
if normalize:
min_disp, max_disp = np.nanquantile(
disp, 0.001), np.nanquantile(disp, 0.99)
disp = (disp - min_disp) / (max_disp - min_disp)
# Apply colormap (inverted so closer=warmer colors)
# Note: matplotlib colormaps return RGBA in [0,1] range
colored = np.nan_to_num(
matplotlib.colormaps[cmap](
1.0 - disp)[..., :3], # Invert and drop alpha
nan=0 # Replace NaN with black
)
# Convert to uint8 and ensure contiguous memory layout
colored = np.ascontiguousarray((colored.clip(0, 1) * 255).astype(np.uint8))
return colored