|
import gradio as gr |
|
from ultralytics import YOLO |
|
import torch |
|
|
|
model_id = "mosesb/best-comic-panel-detection" |
|
model = YOLO("best.pt") |
|
|
|
def detect_panels(pil_image, conf_threshold, iou_threshold): |
|
""" |
|
Takes a PIL image and thresholds, runs YOLOv12 object detection, |
|
and returns the annotated image with bounding boxes. |
|
""" |
|
|
|
results = model.predict(pil_image, conf=conf_threshold, iou=iou_threshold, verbose=False) |
|
annotated_image = results[0].plot() |
|
|
|
|
|
|
|
annotated_image_rgb = annotated_image[..., ::-1] |
|
|
|
return annotated_image_rgb |
|
|
|
|
|
|
|
|
|
title = "YOLOv12 Comic Panel Detection" |
|
description = """ |
|
This demo showcases a **YOLOv12 object detection model** that has been fine-tuned to detect panels in comic book pages. |
|
Upload an image of a comic page, and the model will draw bounding boxes around each detected panel. |
|
This can be a useful first step for downstream tasks like Optical Character Recognition (OCR) or character analysis within comics. |
|
""" |
|
|
|
article = f""" |
|
<div style='text-align: center;'> |
|
<p style='text-align: center'>Model loaded from <a href='https://huggingface.co/{model_id}' target='_blank'>{model_id}</a></p> |
|
<p style='text-align: center'>For more details on the training process, check out the project repository: <a href='https://github.com/mosesab/YOLOV12-Comic-Panel-Detection/blob/main/comic-boundary-detection.ipynb' target='_blank'>Comic Boundary Detection</a></p> |
|
<p>If you like this demo, consider leaving a star on the <a href='https://github.com/mosesab/YOLOV12-Comic-Panel-Detection' target='_blank'>Github repo</a> or a like on the <a href='https://huggingface.co/{model_id}' target='_blank'>Hugging Face model</a>. It helps me know people are interested and motivates further development.</p> |
|
</div> |
|
""" |
|
|
|
|
|
inputs = [ |
|
gr.Image(type="pil", label="Upload Comic Page Image"), |
|
gr.Slider( |
|
minimum=0.0, |
|
maximum=1.0, |
|
value=0.25, |
|
step=0.05, |
|
label="Confidence Threshold", |
|
info="Filters detections. Only boxes with confidence above this value will be shown." |
|
), |
|
gr.Slider( |
|
minimum=0.0, |
|
maximum=1.0, |
|
value=0.7, |
|
step=0.05, |
|
label="IoU Threshold", |
|
info="Controls merging of overlapping boxes. Higher values allow more overlap." |
|
) |
|
] |
|
|
|
examples = [ |
|
["aura_farmer_1.jpg", 0.25, 0.7], |
|
["aura_farmer_2.jpg", 0.25, 0.7], |
|
["aura_farmer_3.jpg", 0.25, 0.7], |
|
["aura_farmer_4.jpg", 0.25, 0.7], |
|
] |
|
|
|
gr.Interface( |
|
fn=detect_panels, |
|
inputs=inputs, |
|
outputs=gr.Image(type="pil", label="Detected Panels"), |
|
title=title, |
|
description=description, |
|
article=article, |
|
examples=examples, |
|
allow_flagging="auto" |
|
).launch() |