Spaces:
Running
Running
File size: 16,685 Bytes
8f42518 f376d1d 8f42518 f376d1d 8f42518 f376d1d 8f42518 f376d1d 8f42518 f376d1d 5362aed f376d1d 8f42518 7618b82 8f42518 7618b82 6f7ec0d 8f42518 f376d1d 5362aed f376d1d 8f42518 6f7ec0d 8f42518 5362aed f376d1d 5362aed 8f42518 f376d1d 5362aed f376d1d 5362aed f376d1d 5362aed 8f42518 f376d1d 5362aed f376d1d 6ce5adf f376d1d 5362aed f376d1d 8f42518 96965a0 f376d1d 96965a0 6ce5adf f376d1d 6ce5adf 8f42518 f376d1d 8f42518 6f7ec0d 8f42518 f376d1d 8f42518 6f7ec0d 8f42518 6ce5adf 96965a0 6ce5adf f376d1d 6ce5adf f376d1d 8f42518 f376d1d 6ce5adf 8f42518 f376d1d 8f42518 f376d1d 8f42518 cc49d2d 8f42518 cc49d2d 5362aed 8f42518 5362aed f376d1d 8f42518 f376d1d 2ab0ee5 f376d1d 8f42518 5362aed f376d1d 8f42518 5362aed 8f42518 f376d1d 8f42518 f376d1d 8f42518 f376d1d 6f7ec0d f376d1d 6f7ec0d 7618b82 6f7ec0d 7618b82 6f7ec0d 7618b82 6f7ec0d f376d1d 8f42518 5362aed f376d1d 6f7ec0d f376d1d 8f42518 f376d1d 96965a0 f376d1d 96965a0 f376d1d 0f86c02 6ce5adf 8f42518 f376d1d 6f7ec0d 8f42518 f376d1d 8f42518 6ce5adf 96965a0 8f42518 f376d1d 5362aed f376d1d 5362aed 8f42518 f376d1d 5362aed 8f42518 f376d1d 8f42518 f376d1d 8f42518 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
import os
import warnings
from typing import Optional, Tuple
import gradio as gr
import pandas as pd
import numpy as np
import plotly.graph_objects as go
from plotly.subplots import make_subplots
warnings.filterwarnings("ignore")
# Import Mostly AI SDK
try:
from mostlyai.sdk import MostlyAI
MOSTLY_AI_AVAILABLE = True
except ImportError:
MOSTLY_AI_AVAILABLE = False
print("Warning: Mostly AI SDK not available. Please install with: pip install mostlyai[local]")
class SyntheticDataGenerator:
def __init__(self):
self.mostly = None
self.generator = None
self.original_data = None
def initialize_mostly_ai(self) -> Tuple[bool, str]:
if not MOSTLY_AI_AVAILABLE:
return False, "Mostly AI SDK not installed. Please install with: pip install mostlyai[local]"
try:
self.mostly = MostlyAI(local=True, local_port=8080)
return True, "Mostly AI SDK initialized successfully."
except Exception as e:
return False, f"Failed to initialize Mostly AI SDK: {str(e)}"
def train_generator(
self,
data: pd.DataFrame,
name: str,
epochs: int = 10,
max_training_time: int = 30,
batch_size: int = 32,
value_protection: bool = True,
rare_category_protection: bool = False,
flexible_generation: bool = False,
model_size: str = "MEDIUM",
target_accuracy: float = 0.95,
validation_split: float = 0.2,
learning_rate: float = 0.001,
early_stopping_patience: int = 10,
dropout_rate: float = 0.1,
weight_decay: float = 0.0001,
) -> Tuple[bool, str]:
if not self.mostly:
return False, "Mostly AI SDK not initialized. Please initialize the SDK first."
try:
self.original_data = data
train_config = {
"tables": [
{
"name": name,
"data": data,
"tabular_model_configuration": {
"max_epochs": epochs,
"max_training_time": max_training_time,
"value_protection": value_protection,
"batch_size": batch_size,
"rare_category_protection": rare_category_protection,
"flexible_generation": flexible_generation,
"model_size": model_size, # "SMALL" | "MEDIUM" | "LARGE"
"target_accuracy": target_accuracy, # early stop once target met
"validation_split": validation_split,
"learning_rate": learning_rate,
"early_stopping_patience": early_stopping_patience,
"dropout_rate": dropout_rate,
"weight_decay": weight_decay,
},
}
]
}
self.generator = self.mostly.train(config=train_config)
return True, f"Training completed successfully. Model name: {name}"
except Exception as e:
return False, f"Training failed with error: {str(e)}"
def generate_synthetic_data(self, size: int) -> Tuple[Optional[pd.DataFrame], str]:
if not self.generator:
return None, "No trained generator available. Please train a model first."
try:
synthetic_data = self.mostly.generate(self.generator, size=size)
df = synthetic_data.data()
return df, f"Synthetic data generated successfully. {len(df)} records created."
except Exception as e:
return None, f"Synthetic data generation failed with error: {str(e)}"
def estimate_memory_usage(self, df: pd.DataFrame) -> str:
if df is None or df.empty:
return "No data available to analyze."
memory_mb = df.memory_usage(deep=True).sum() / (1024 * 1024)
rows, cols = len(df), len(df.columns)
estimated_training_mb = memory_mb * 4
status = "Good" if memory_mb < 100 else ("Large" if memory_mb < 500 else "Very Large")
return f"""
Memory Usage Estimate:
- Data size: {memory_mb:.1f} MB
- Estimated training memory: {estimated_training_mb:.1f} MB
- Status: {status}
- Rows: {rows:,} | Columns: {cols}
""".strip()
# --- App state ---
generator = SyntheticDataGenerator()
_last_synth_df: Optional[pd.DataFrame] = None
# ---- Gradio wrappers ----
def initialize_sdk() -> str:
ok, msg = generator.initialize_mostly_ai()
return ("Success: " if ok else "Error: ") + msg
def train_model(
data: pd.DataFrame,
model_name: str,
epochs: int,
max_training_time: int,
batch_size: int,
value_protection: bool,
rare_category_protection: bool,
flexible_generation: bool,
model_size: str,
target_accuracy: float,
validation_split: float,
learning_rate: float,
early_stopping_patience: int,
dropout_rate: float,
weight_decay: float,
) -> str:
if data is None or data.empty:
return "Error: No data provided. Please upload or create sample data first."
ok, msg = generator.train_generator(
data=data,
name=model_name,
epochs=epochs,
max_training_time=max_training_time,
batch_size=batch_size,
value_protection=value_protection,
rare_category_protection=rare_category_protection,
flexible_generation=flexible_generation,
model_size=model_size,
target_accuracy=target_accuracy,
validation_split=validation_split,
learning_rate=learning_rate,
early_stopping_patience=early_stopping_patience,
dropout_rate=dropout_rate,
weight_decay=weight_decay,
)
return ("Success: " if ok else "Error: ") + msg
def generate_data(size: int) -> Tuple[Optional[pd.DataFrame], str]:
global _last_synth_df
synth_df, message = generator.generate_synthetic_data(size)
if synth_df is not None:
_last_synth_df = synth_df.copy()
return synth_df, f"Success: {message}"
else:
return None, f"Error: {message}"
def download_csv_prepare() -> Optional[str]:
"""Return a path to the latest synthetic CSV; used as output to gr.File."""
global _last_synth_df
if _last_synth_df is None or _last_synth_df.empty:
return None
os.makedirs("/tmp", exist_ok=True)
path = "/tmp/synthetic_data.csv"
_last_synth_df.to_csv(path, index=False)
return path
def create_comparison_plot(original_df: pd.DataFrame, synthetic_df: pd.DataFrame):
if original_df is None or synthetic_df is None:
return None
numeric_cols = original_df.select_dtypes(include=[np.number]).columns.tolist()
if not numeric_cols:
return None
n_cols = min(3, len(numeric_cols))
n_rows = (len(numeric_cols) + n_cols - 1) // n_cols
fig = make_subplots(rows=n_rows, cols=n_cols, subplot_titles=numeric_cols[: n_rows * n_cols])
for i, col in enumerate(numeric_cols[: n_rows * n_cols]):
row = i // n_cols + 1
col_idx = i % n_cols + 1
fig.add_trace(go.Histogram(x=original_df[col], name=f"Original {col}", opacity=0.7, nbinsx=20), row=row, col=col_idx)
fig.add_trace(go.Histogram(x=synthetic_df[col], name=f"Synthetic {col}", opacity=0.7, nbinsx=20), row=row, col=col_idx)
fig.update_layout(title="Original vs Synthetic Data Comparison", height=300 * n_rows, showlegend=True)
return fig
# ---- UI ----
def create_interface():
with gr.Blocks(title="MOSTLY AI Synthetic Data Generator", theme=gr.themes.Soft()) as demo:
gr.Image(
value="https://img.mailinblue.com/8225865/images/content_library/original/6880d164e4e4ea1a183ad4c0.png",
show_label=False,
elem_id="header-image",
)
gr.Markdown(
"""
# Synthetic Data SDK by MOSTLY AI Demo Space
[Documentation](https://mostly-ai.github.io/mostlyai/) | [Technical White Paper](https://arxiv.org/abs/2508.00718) | [Usage Examples](https://mostly-ai.github.io/mostlyai/usage/) | [Free Cloud Service](https://app.mostly.ai/)
A Python toolkit for generating high-fidelity, privacy-safe synthetic data.
"""
)
with gr.Tab("Quick Start"):
gr.Markdown("### Initialize the SDK and upload your data")
with gr.Row():
with gr.Column():
init_btn = gr.Button("Initialize Mostly AI SDK", variant="primary")
init_status = gr.Textbox(label="Initialization Status", interactive=False)
with gr.Column():
gr.Markdown(
"""
**Next Steps:**
1. Initialize the SDK
2. Go to the "Upload Data and Train Model" tab to upload your CSV file
3. Train a model on your data
4. Generate synthetic data
"""
)
with gr.Tab("Upload Data and Train Model"):
gr.Markdown("### Upload your CSV file to generate synthetic data")
gr.Markdown(
"""
**File Requirements:**
- Format: CSV with header row
- Size: Optimized for Hugging Face Spaces (2 vCPU, 16GB RAM)
"""
)
file_upload = gr.File(label="Upload CSV File", file_types=[".csv"], file_count="single")
uploaded_data = gr.Dataframe(label="Uploaded Data", interactive=False)
memory_info = gr.Markdown(label="Memory Usage Info", visible=False)
with gr.Row():
with gr.Column(scale=1):
model_name = gr.Textbox(
value="My Synthetic Model",
label="Generator Name",
placeholder="Enter a name for your generator",
info="Appears in training runs and saved generators."
)
epochs = gr.Slider(
1, 200, value=100, step=1, label="Training Epochs",
info="Maximum number of passes over the training data."
)
max_training_time = gr.Slider(
1, 1000, value=60, step=1, label="Maximum Training Time (minutes)",
info="Upper bound in minutes; training stops if exceeded."
)
batch_size = gr.Slider(
8, 1024, value=32, step=8, label="Batch Size",
info="Number of rows per optimization step. Larger can speed up but needs more memory."
)
value_protection = gr.Checkbox(
label="Value Protection",
info="Adds protections to reduce memorization of unique or sensitive values.",
value=False
)
rare_category_protection = gr.Checkbox(
label="Rare Category Protection",
info="Prevents overfitting to infrequent categories to improve privacy and robustness.",
value=False
)
with gr.Column(scale=1):
flexible_generation = gr.Checkbox(
label="Flexible Generation",
info="Allows generation when inputs slightly differ from training schema.",
value=True
)
model_size = gr.Dropdown(
choices=["SMALL", "MEDIUM", "LARGE"],
value="MEDIUM",
label="Model Size",
info="Sets model capacity. Larger can improve fidelity but uses more compute."
)
target_accuracy = gr.Slider(
0.50, 0.999, value=0.95, step=0.001, label="Target Accuracy",
info="Stop early when validation accuracy reaches this threshold."
)
validation_split = gr.Slider(
0.05, 0.5, value=0.2, step=0.01, label="Validation Split",
info="Fraction of the dataset held out for validation during training."
)
early_stopping_patience = gr.Slider(
0, 50, value=10, step=1, label="Early Stopping Patience (epochs)",
info="Stop if no validation improvement after this many epochs."
)
with gr.Column(scale=1):
learning_rate = gr.Number(
value=0.001, precision=6, label="Learning Rate",
info="Step size for the optimizer. Typical range: 1e-4 to 1e-2."
)
dropout_rate = gr.Slider(
0.0, 0.6, value=0.1, step=0.01, label="Dropout Rate",
info="Regularization to reduce overfitting by randomly dropping units."
)
weight_decay = gr.Number(
value=0.0001, precision=6, label="Weight Decay",
info="L2 regularization strength applied to model weights."
)
train_btn = gr.Button("Train Model", variant="primary")
train_status = gr.Textbox(label="Training Status", interactive=False)
with gr.Tab("Generate Data"):
gr.Markdown("### Generate synthetic data from your trained model")
with gr.Row():
with gr.Column():
gen_size = gr.Slider(10, 1000, value=100, step=10, label="Number of Records to Generate",
info="How many synthetic rows to create in the table.")
generate_btn = gr.Button("Generate Synthetic Data", variant="primary")
with gr.Column():
gen_status = gr.Textbox(label="Generation Status", interactive=False)
synthetic_data = gr.Dataframe(label="Synthetic Data", interactive=False)
with gr.Row():
csv_download_btn = gr.Button("Download CSV", variant="secondary")
with gr.Group(visible=False) as csv_group:
csv_file = gr.File(label="Synthetic CSV", interactive=False)
comparison_plot = gr.Plot(label="Data Comparison")
# ---- Events ----
init_btn.click(initialize_sdk, outputs=[init_status])
train_btn.click(
train_model,
inputs=[
uploaded_data, model_name,
epochs, max_training_time, batch_size,
value_protection, rare_category_protection, flexible_generation,
model_size, target_accuracy, validation_split,
learning_rate, early_stopping_patience, dropout_rate, weight_decay
],
outputs=[train_status],
)
generate_btn.click(generate_data, inputs=[gen_size], outputs=[synthetic_data, gen_status])
synthetic_data.change(create_comparison_plot, inputs=[uploaded_data, synthetic_data], outputs=[comparison_plot])
def _prepare_csv_for_download():
path = download_csv_prepare()
if path:
return path, gr.update(visible=True)
else:
return None, gr.update(visible=False)
csv_download_btn.click(
_prepare_csv_for_download,
outputs=[csv_file, csv_group],
)
def process_uploaded_file(file):
if file is None:
return None, "No file uploaded.", gr.update(visible=False)
try:
df = pd.read_csv(file.name)
success_msg = f"File uploaded successfully. {len(df)} rows × {len(df.columns)} columns"
mem_info = generator.estimate_memory_usage(df)
return df, success_msg, gr.update(value=mem_info, visible=True)
except Exception as e:
return None, f"Error reading file: {str(e)}", gr.update(visible=False)
file_upload.change(process_uploaded_file, inputs=[file_upload], outputs=[uploaded_data, train_status, memory_info])
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|