File size: 13,688 Bytes
49c6db7 8786ac3 49c6db7 f0821bf 44c9541 e16c5c4 e426c5a 3e66137 47accba 6f40774 980a5f7 f672193 1cffc39 47accba 266f336 47accba 465186b 3e66137 d874e72 3e66137 2fefa26 d51d5c4 2fefa26 3e66137 49c6db7 2949f09 49c6db7 3e66137 49c6db7 f0821bf fd26ead 255910e 49c6db7 f0821bf 1c5339e f0821bf c034f55 736285e c034f55 ea7f537 5e93cff ea7f537 49c6db7 bf308b6 255910e 49c6db7 5e93cff 49c6db7 32b0ba4 49c6db7 eeb07d9 ded4361 7a96d4b a887322 c08aa90 7a96d4b c08aa90 2bae9a9 7a96d4b c08aa90 7090db4 f9b1b13 7a96d4b 5ba71fa aabd05b 4bc8e38 7090db4 4bc8e38 8ebcd09 f7e0b43 7a96d4b 8ebcd09 7a96d4b 8ebcd09 7a96d4b 4bc8e38 d9286e0 8bb1bfa 7090db4 4bc8e38 7c8c045 0079cc8 4bc8e38 7c8c045 5ba71fa 218cd58 4bc8e38 5ba71fa a887322 49c6db7 18b4441 8a8ccfd 5ba71fa 958ea27 5ba71fa 18b4441 4c3c584 a08adb1 eecd9f2 7902217 5ba71fa 7902217 5ba71fa e16c5c4 980a5f7 255910e 93bdd17 4bc8e38 e16c5c4 4c3c584 980a5f7 49c6db7 fd1e2f9 25641bf f62e231 f453514 ecf2bd9 f453514 e3ba99d f453514 f62e231 e3ba99d 64935e2 e3ba99d 64935e2 692738d 7b4fea1 e3ba99d f62e231 a7916aa f62e231 e3ba99d 9e13cfa f62e231 ac8a141 e3ba99d 2d8800e 2c27168 c77528c 2c27168 c3abe48 95242a5 50f6c2b 95242a5 47ad03f 95242a5 03ae964 2e35a3d 1fe72e5 22bab81 d23bb1f 9a7b38a 7a96d4b 9a7b38a f43ddd6 daeff40 e19ebf3 16b034a f43ddd6 c0e39ef 03ae964 f43ddd6 980a5f7 f43ddd6 980a5f7 4d163cf e426c5a e3ba99d 44d9c6b 7beb8b9 e3ba99d 7a96d4b a3dc09f 25641bf 2c27168 157bb22 3e49020 2949f09 3e49020 157bb22 2c27168 fe58ba1 2c27168 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
import numpy as np
import gradio as gr
import spaces
import cv2
from cellpose import models
from matplotlib.colors import hsv_to_rgb
import matplotlib.pyplot as plt
import os, io, base64
from PIL import Image
from cellpose.io import imread, imsave
import glob
from huggingface_hub import hf_hub_download
img = np.zeros((96, 128), dtype = np.uint8)
fp0 = Image.fromarray(img)
#fp0 = "0.png"
#imsave(fp0, img)
# data retrieval
def download_weights():
return hf_hub_download(repo_id="mouseland/cellpose-sam", filename="cpsam")
#os.system("wget -q https://huggingface.co/mouseland/cellpose-sam/resolve/main/cpsam")
def download_weights_old():
import os, requests
fname = ['cpsam']
url = ["https://osf.io/d7c8e/download"]
for j in range(len(url)):
if not os.path.isfile(fname[j]):
ntries = 0
while ntries<10:
try:
r = requests.get(url[j])
except:
print("!!! Failed to download data !!!")
ntries += 1
print(ntries)
if r.status_code != requests.codes.ok:
print("!!! Failed to download data !!!")
else:
with open(fname[j], "wb") as fid:
fid.write(r.content)
try:
fpath = download_weights()
model = models.CellposeModel(gpu=True, pretrained_model = fpath)
except Exception as e:
print(f"Error loading model: {e}")
exit(1)
def plot_flows(y):
Y = (np.clip(normalize99(y[0][0]),0,1) - 0.5) * 2
X = (np.clip(normalize99(y[1][0]),0,1) - 0.5) * 2
H = (np.arctan2(Y, X) + np.pi) / (2*np.pi)
S = normalize99(y[0][0]**2 + y[1][0]**2)
HSV = np.concatenate((H[:,:,np.newaxis], S[:,:,np.newaxis], S[:,:,np.newaxis]), axis=-1)
HSV = np.clip(HSV, 0.0, 1.0)
flow = (hsv_to_rgb(HSV) * 255).astype(np.uint8)
return flow
def plot_outlines(img, masks):
img = normalize99(img)
img = np.clip(img, 0, 1)
outpix = []
contours, hierarchy = cv2.findContours(masks.astype(np.int32), mode=cv2.RETR_FLOODFILL, method=cv2.CHAIN_APPROX_SIMPLE)
for c in range(len(contours)):
pix = contours[c].astype(int).squeeze()
if len(pix)>4:
peri = cv2.arcLength(contours[c], True)
approx = cv2.approxPolyDP(contours[c], 0.001, True)[:,0,:]
outpix.append(approx)
figsize = (6,6)
if img.shape[0]>img.shape[1]:
figsize = (6*img.shape[1]/img.shape[0], 6)
else:
figsize = (6, 6*img.shape[0]/img.shape[1])
fig = plt.figure(figsize=figsize, facecolor='k')
ax = fig.add_axes([0.0,0.0,1,1])
ax.set_xlim([0,img.shape[1]])
ax.set_ylim([0,img.shape[0]])
ax.imshow(img[::-1], origin='upper', aspect = 'auto')
if outpix is not None:
for o in outpix:
ax.plot(o[:,0], img.shape[0]-o[:,1], color=[1,0,0], lw=1)
ax.axis('off')
#bytes_image = io.BytesIO()
#plt.savefig(bytes_image, format='png', facecolor=fig.get_facecolor(), edgecolor='none')
#bytes_image.seek(0)
#img_arr = np.frombuffer(bytes_image.getvalue(), dtype=np.uint8)
#bytes_image.close()
#img = cv2.imdecode(img_arr, 1)
#img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
#del bytes_image
#fig.clf()
#plt.close(fig)
buf = io.BytesIO()
fig.savefig(buf, bbox_inches='tight')
buf.seek(0)
pil_img = Image.open(buf)
plt.close(fig)
return pil_img
def plot_overlay(img, masks):
if img.ndim>2:
img_gray = img.astype(np.float32).mean(axis=-1)
else:
img_gray = img.astype(np.float32)
img = normalize99(img_gray)
#img = np.clip(img, 0, 1)
HSV = np.zeros((img.shape[0], img.shape[1], 3), np.float32)
HSV[:,:,2] = np.clip(img*1.5, 0, 1.0)
for n in range(int(masks.max())):
ipix = (masks==n+1).nonzero()
HSV[ipix[0],ipix[1],0] = np.random.rand()
HSV[ipix[0],ipix[1],1] = 1.0
RGB = (hsv_to_rgb(HSV) * 255).astype(np.uint8)
return RGB
def normalize99(img):
X = img.copy()
X = (X - np.percentile(X, 1)) / (1e-10 + np.percentile(X, 99) - np.percentile(X, 1))
return X
def image_resize(img, resize=400):
ny,nx = img.shape[:2]
if np.array(img.shape).max() > resize:
if ny>nx:
nx = int(nx/ny * resize)
ny = resize
else:
ny = int(ny/nx * resize)
nx = resize
shape = (nx,ny)
img = cv2.resize(img, shape)
img = img.astype(np.uint8)
return img
@spaces.GPU(duration=10)
def run_model_gpu(img, max_iter, flow_threshold, cellprob_threshold):
masks, flows, _ = model.eval(img, niter = max_iter, flow_threshold = flow_threshold, cellprob_threshold = cellprob_threshold)
return masks, flows
@spaces.GPU(duration=60)
def run_model_gpu60(img, max_iter, flow_threshold, cellprob_threshold):
masks, flows, _ = model.eval(img, niter = max_iter, flow_threshold = flow_threshold, cellprob_threshold = cellprob_threshold)
return masks, flows
@spaces.GPU(duration=240)
def run_model_gpu240(img, max_iter, flow_threshold, cellprob_threshold):
masks, flows, _ = model.eval(img, niter = max_iter, flow_threshold = flow_threshold, cellprob_threshold = cellprob_threshold)
return masks, flows
import datetime
from zipfile import ZipFile
def cellpose_segment(filepath, resize = 1000,max_iter = 250, flow_threshold= 0.4, cellprob_threshold = 0):
zip_path = os.path.splitext(filepath[-1])[0]+"_masks.zip"
#zip_path = 'masks.zip'
with ZipFile(zip_path, 'w') as myzip:
for j in range((len(filepath))):
now = datetime.datetime.now()
formatted_now = now.strftime("%Y-%m-%d %H:%M:%S")
img_input = imread(filepath[j])
#img_input = np.array(img_pil)
img = image_resize(img_input, resize = resize)
maxsize = np.max(img.shape)
if maxsize<=1000:
masks, flows = run_model_gpu(img, max_iter, flow_threshold, cellprob_threshold)
elif maxsize < 5000:
masks, flows = run_model_gpu60(img, max_iter, flow_threshold, cellprob_threshold)
elif maxsize < 20000:
masks, flows = run_model_gpu240(img, max_iter, flow_threshold, cellprob_threshold)
else:
raise ValueError("Image size must be less than 20,000")
print(formatted_now, j, masks.max(), os.path.split(filepath[j])[-1])
target_size = (img_input.shape[1], img_input.shape[0])
if (target_size[0]!=img.shape[1] or target_size[1]!=img.shape[0]):
# scale it back to keep the orignal size
masks_rsz = cv2.resize(masks.astype('uint16'), target_size, interpolation=cv2.INTER_NEAREST).astype('uint16')
else:
masks_rsz = masks.copy()
fname_masks = os.path.splitext(filepath[j])[0]+"_masks.tif"
imsave(fname_masks, masks_rsz)
myzip.write(fname_masks, arcname = os.path.split(fname_masks)[-1])
#masks, flows, _ = model.eval(img, channels=[0,0])
flows = flows[0]
# masks = np.zeros(img.shape[:2])
# flows = np.zeros_like(img)
outpix = plot_outlines(img, masks)
#overlay = plot_overlay(img, masks)
#crand = .2 + .8 * np.random.rand(np.max(masks.flatten()).astype('int')+1,).astype('float32')
#crand[0] = 0
#overlay = Image.fromarray(overlay)
flows = Image.fromarray(flows)
Ly, Lx = img.shape[:2]
outpix = outpix.resize((Lx, Ly), resample = Image.BICUBIC)
#overlay = overlay.resize((Lx, Ly), resample = Image.BICUBIC)
flows = flows.resize((Lx, Ly), resample = Image.BICUBIC)
fname_out = os.path.splitext(filepath[-1])[0]+"_outlines.png"
outpix.save(fname_out) #"outlines.png")
#fname_flows = os.path.splitext(filepath[-1])[0]+"_flows.png"
#flows.save(fname_flows) #"outlines.png")
if len(filepath)>1:
b1 = gr.DownloadButton(visible=True, value = zip_path)
else:
b1 = gr.DownloadButton(visible=True, value = fname_masks)
b2 = gr.DownloadButton(visible=True, value = fname_out) #"outlines.png")
return outpix, flows, b1, b2
def download_function():
b1 = gr.DownloadButton("Download masks as TIFF", visible=False)
b2 = gr.DownloadButton("Download outline image as PNG", visible=False)
return b1, b2
def tif_view(filepath):
fpath, fext = os.path.splitext(filepath)
if fext in ['tiff', 'tif']:
img = imread(filepath[-1])
if img.ndim==2:
img = np.tile(img[:,:,np.newxis], [1,1,3])
elif img.ndim==3:
imin = np.argmin(img.shape)
if imin<2:
img = np.tranpose(img, [2, imin])
else:
raise ValueError("TIF cannot have more than three dimensions")
Ly, Lx, nchan = img.shape
imgi = np.zeros((Ly, Lx, 3))
nn = np.minimum(3, img.shape[-1])
imgi[:,:,:nn] = img[:,:,:nn]
#filepath = fpath+'.png'
imsave(filepath, imgi)
return filepath
def norm_path(filepath):
img = imread(filepath)
img = normalize99(img)
img = np.clip(img, 0, 1)
fpath, fext = os.path.splitext(filepath)
filepath = fpath +'.png'
pil_image = Image.fromarray((255. * img).astype(np.uint8))
pil_image.save(filepath)
#imsave(filepath, pil_image)
return filepath
def update_image(filepath):
for f in filepath:
f = tif_view(f)
filepath_show = norm_path(filepath[-1])
return filepath_show, filepath, fp0, fp0
def update_button(filepath):
filepath = tif_view(filepath)
filepath_show = norm_path(filepath)
return filepath_show, [filepath], fp0, fp0
with gr.Blocks(title = "Hello",
css=".gradio-container {background:purple;}") as demo:
#filepath = ""
with gr.Row():
with gr.Column(scale=2):
gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:20pt; font-weight:bold; text-align:center; color:white;">Cellpose-SAM for cellular
segmentation <a style="color:#cfe7fe; font-size:14pt;" href="https://www.biorxiv.org/content/10.1101/2025.04.28.651001v1" target="_blank">[paper]</a>
<a style="color:white; font-size:14pt;" href="https://github.com/MouseLand/cellpose" target="_blank">[github]</a>
<a style="color:white; font-size:14pt;" href="https://www.youtube.com/watch?v=KIdYXgQemcI" target="_blank">[talk]</a>
</div>""")
gr.HTML("""<h4 style="color:white;">You may need to login/refresh for 5 minutes of free GPU compute per day (enough to process hundreds of images). </h4>""")
input_image = gr.Image(label = "Input", type = "filepath")
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
resize = gr.Number(label = 'max resize', value = 1000)
max_iter = gr.Number(label = 'max iterations', value = 250)
flow_threshold = gr.Number(label = 'flow threshold', value = 0.4)
cellprob_threshold = gr.Number(label = 'cellprob threshold', value = 0)
up_btn = gr.UploadButton("Multi-file upload (png, jpg, tif etc)", visible=True, file_count = "multiple")
#gr.HTML("""<h4 style="color:white;"> Note2: Only the first image of a tif will display the segmentations, but you can download segmentations for all planes. </h4>""")
with gr.Column(scale=1):
send_btn = gr.Button("Run Cellpose-SAM")
down_btn = gr.DownloadButton("Download masks (TIF)", visible=False)
down_btn2 = gr.DownloadButton("Download outlines (PNG)", visible=False)
with gr.Column(scale=2):
outlines = gr.Image(label = "Outlines", type = "pil", format = 'png', value = fp0) #, width = "50vw", height = "20vw")
#img_overlay = gr.Image(label = "Overlay", type = "pil", format = 'png') #, width = "50vw", height = "20vw")
flows = gr.Image(label = "Cellpose flows", type = "pil", format = 'png', value = fp0) #, width = "50vw", height = "20vw")
sample_list = glob.glob("samples/*.png")
#sample_list = []
#for j in range(23):
# sample_list.append("samples/img%0.2d.png"%j)
gr.Examples(sample_list, fn = update_button, inputs=input_image, outputs = [input_image, up_btn, outlines, flows], examples_per_page=50, label = "Click on an example to try it")
input_image.upload(update_button, input_image, [input_image, up_btn, outlines, flows])
up_btn.upload(update_image, up_btn, [input_image, up_btn, outlines, flows])
send_btn.click(cellpose_segment, [up_btn, resize, max_iter, flow_threshold, cellprob_threshold], [outlines, flows, down_btn, down_btn2])
#down_btn.click(download_function, None, [down_btn, down_btn2])
gr.HTML("""<h4 style="color:white;"> Notes:<br>
<li>you can load and process 2D, multi-channel tifs.
<li>the smallest dimension of a tif --> channels
<li>you can upload multiple files and download a zip of the segmentations
<li>install Cellpose-SAM locally for full functionality.
</h4>""")
demo.launch()
|