Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,531 Bytes
597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 9315afa 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 9315afa 8517188 9315afa 597cecf 9315afa 597cecf d9c449e 597cecf 9315afa 597cecf 39d2f14 597cecf 39d2f14 8a739c0 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 c246699 39d2f14 597cecf 0e28cb3 597cecf e23c02d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
## IMPORTS ##
import os
import tempfile
import time
from pathlib import Path
import gradio as gr
import numpy as np
import spaces
import torch
import torchaudio
from cached_path import cached_path
from huggingface_hub import hf_hub_download
from transformers import pipeline
from infer import DMOInference
## CUDA DEVICE ##
device = "cuda" if torch.cuda.is_available() else "cpu"
## LOAD MODELS ##
asr_pipe = pipeline(
"automatic-speech-recognition", model="openai/whisper-large-v3-turbo", device=device
)
model = DMOInference(
student_checkpoint_path=str(cached_path("hf://yl4579/DMOSpeech2/model_85000.pt")),
duration_predictor_path=str(cached_path("hf://yl4579/DMOSpeech2/model_1500.pt")),
device=device,
model_type="F5TTS_Base",
)
def transcribe(ref_audio, language=None):
"""Transcribe audio using the pre-loaded ASR pipeline."""
return asr_pipe(
ref_audio,
chunk_length_s=30,
batch_size=128,
generate_kwargs=(
{"task": "transcribe", "language": language}
if language
else {"task": "transcribe"}
),
return_timestamps=False,
)["text"].strip()
MODES = {
"Student Only (4 steps)": {
"teacher_steps": 0,
"teacher_stopping_time": 1.0,
"student_start_step": 0,
"description": "Fastest (4 steps), good quality"
},
"Teacher-Guided (8 steps)": {
"teacher_steps": 16,
"teacher_stopping_time": 0.07,
"student_start_step": 1,
"description": "Best balance (8 steps), recommended"
},
"High Diversity (16 steps)": {
"teacher_steps": 24,
"teacher_stopping_time": 0.3,
"student_start_step": 2,
"description": "More natural prosody (16 steps)"
},
"Custom": {
"teacher_steps": None,
"teacher_stopping_time": None,
"student_start_step": None,
"description": "Fine-tune all parameters"
}
}
@spaces.GPU(duration=120)
def generate_speech(
prompt_audio,
prompt_text,
target_text,
mode,
temperature,
custom_teacher_steps,
custom_teacher_stopping_time,
custom_student_start_step,
verbose,
):
if prompt_audio is None:
raise gr.Error("Please upload a reference audio!")
if not target_text:
raise gr.Error("Please enter text to generate!")
if not prompt_text and prompt_text != "":
prompt_text = transcribe(prompt_audio)
if mode == "Custom":
teacher_steps, teacher_stopping_time, student_start_step = custom_teacher_steps, custom_teacher_stopping_time, custom_student_start_step
else:
teacher_steps = MODES[mode]["teacher_steps"]
teacher_stopping_time = MODES[mode]["teacher_stopping_time"]
student_start_step = MODES[mode]["student_start_step"]
generated_audio = model.generate(
gen_text=target_text,
audio_path=prompt_audio,
prompt_text=prompt_text if prompt_text else None,
teacher_steps=teacher_steps,
teacher_stopping_time=teacher_stopping_time,
student_start_step=student_start_step,
temperature=temperature,
verbose=verbose,
)
if isinstance(generated_audio, torch.Tensor):
audio_np = generated_audio.cpu().numpy()
else:
audio_np = generated_audio
# Ensure audio is properly normalized and in the correct format
if audio_np.ndim == 2 and audio_np.shape[0] == 1:
audio_np = audio_np.squeeze(0) # Remove batch dimension if present
# Normalize audio to [-1, 1] range if needed
if np.abs(audio_np).max() > 1.0:
audio_np = audio_np / np.abs(audio_np).max()
# Ensure audio is in float32 format
audio_np = audio_np.astype(np.float32)
return (24000, audio_np)
# Create Gradio interface
with gr.Blocks(title="DMOSpeech 2 - Zero-Shot TTS") as demo:
gr.Markdown(
f"""
# ποΈ DMOSpeech 2: Zero-Shot Text-to-Speech
[GitHub Repo](https://github.com/yl4579/DMOSpeech2)
Generate natural speech in any voice with just a short reference audio!
"""
)
with gr.Row():
with gr.Column(scale=1):
# Reference audio input
prompt_audio = gr.Audio(
label="π Reference Audio",
type="filepath",
sources=["upload", "microphone"],
)
prompt_text = gr.Textbox(
label="π Reference Text (leave empty for auto-transcription)",
placeholder="The text spoken in the reference audio...",
lines=2,
)
target_text = gr.Textbox(
label="βοΈ Text to Generate",
placeholder="Enter the text you want to synthesize...",
lines=4,
)
# Generation mode
mode = gr.Radio(
choices=[
"Student Only (4 steps)",
"Teacher-Guided (8 steps)",
"High Diversity (16 steps)",
"Custom",
],
value="Teacher-Guided (8 steps)",
label="π Generation Mode",
info="Choose speed vs quality/diversity tradeoff",
)
# Advanced settings (collapsible)
with gr.Accordion("βοΈ Advanced Settings", open=False):
temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Duration Temperature",
info="0 = deterministic, >0 = more variation in speech rhythm",
)
with gr.Group(visible=False) as custom_settings:
gr.Markdown("### Custom Mode Settings")
custom_teacher_steps = gr.Slider(
minimum=0,
maximum=32,
value=16,
step=1,
label="Teacher Steps",
info="More steps = higher quality",
)
custom_teacher_stopping_time = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.07,
step=0.01,
label="Teacher Stopping Time",
info="When to switch to student",
)
custom_student_start_step = gr.Slider(
minimum=0,
maximum=4,
value=1,
step=1,
label="Student Start Step",
info="Which student step to start from",
)
verbose = gr.Checkbox(
value=False,
label="Verbose Output",
info="Show detailed generation steps",
)
generate_btn = gr.Button("π΅ Generate Speech", variant="primary", size="lg")
with gr.Column(scale=1):
# Output
output_audio = gr.Audio(
label="π Generated Speech", type="filepath", autoplay=True
)
# Tips
gr.Markdown(
"""
### π‘ Quick Tips:
- **Auto-transcription**: Leave reference text empty to auto-transcribe
- **Student Only**: Fastest (4 steps), good quality
- **Teacher-Guided**: Best balance (8 steps), recommended
- **High Diversity**: More natural prosody (16 steps)
- **Custom Mode**: Fine-tune all parameters
### π Expected RTF (Real-Time Factor):
- Student Only: ~0.05x (20x faster than real-time)
- Teacher-Guided: ~0.10x (10x faster)
- High Diversity: ~0.20x (5x faster)
"""
)
# Event handler
generate_btn.click(
generate_speech,
inputs=[
prompt_audio,
prompt_text,
target_text,
mode,
temperature,
custom_teacher_steps,
custom_teacher_stopping_time,
custom_student_start_step,
verbose,
],
outputs=[output_audio],
)
mode.change(lambda x: gr.update(visible=x == "Custom"), inputs=[mode], outputs=[custom_settings])
demo.queue().launch() |