Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,639 Bytes
39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 |
from __future__ import annotations
import gc
import math
import os
import torch
import torch.nn.functional as F
import torchaudio
import wandb
from accelerate import Accelerator
from accelerate.utils import DistributedDataParallelKwargs
from ema_pytorch import EMA
from torch.optim import AdamW
from torch.optim.lr_scheduler import LinearLR, SequentialLR
from torch.utils.data import Dataset # <-- Added Subset import
from torch.utils.data import DataLoader, SequentialSampler, Subset
from tqdm import tqdm
from duration_predictor import calculate_remaining_lengths
from f5_tts.model import CFM
from f5_tts.model.dataset import DynamicBatchSampler, collate_fn
from f5_tts.model.utils import (default, exists, lens_to_mask, list_str_to_idx,
list_str_to_tensor, mask_from_frac_lengths)
# trainer
SAMPLE_RATE = 24_000
def masked_l1_loss(est_lengths, tar_lengths):
first_zero_idx = (tar_lengths == 0).int().argmax(dim=1)
B, L = tar_lengths.shape
range_tensor = torch.arange(L, device=tar_lengths.device).expand(B, L)
mask = range_tensor <= first_zero_idx[:, None] # Include the first 0
loss = F.l1_loss(est_lengths, tar_lengths, reduction="none") # (B, L)
loss = loss * mask # Zero out ignored positions
loss = loss.sum() / mask.sum() # Normalize by valid elements
return loss
def masked_cross_entropy_loss(est_length_logits, tar_length_labels):
first_zero_idx = (tar_length_labels == 0).int().argmax(dim=1)
B, L = tar_length_labels.shape
range_tensor = torch.arange(L, device=tar_length_labels.device).expand(B, L)
mask = range_tensor <= first_zero_idx[:, None] # Include the first 0
loss = F.cross_entropy(
est_length_logits.reshape(-1, est_length_logits.size(-1)),
tar_length_labels.reshape(-1),
reduction="none",
).reshape(B, L)
loss = loss * mask
loss = loss.sum() / mask.sum()
return loss
class Trainer:
def __init__(
self,
model,
vocab_size,
vocab_char_map,
process_token_to_id=True,
loss_fn="L1",
lambda_L1=1,
gumbel_tau=0.5,
n_class=301,
n_frame_per_class=10,
epochs=15,
learning_rate=1e-4,
num_warmup_updates=20000,
save_per_updates=1000,
checkpoint_path=None,
batch_size=32,
batch_size_type: str = "sample",
max_samples=32,
grad_accumulation_steps=1,
max_grad_norm=1.0,
logger: str | None = "wandb", # "wandb" | "tensorboard" | None
wandb_project="test_e2-tts",
wandb_run_name="test_run",
wandb_resume_id: str = None,
last_per_steps=None,
accelerate_kwargs: dict = dict(),
ema_kwargs: dict = dict(),
):
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=False)
if logger == "wandb" and not wandb.api.api_key:
logger = None
print(f"Using logger: {logger}")
self.accelerator = Accelerator(
log_with=logger if logger == "wandb" else None,
kwargs_handlers=[ddp_kwargs],
gradient_accumulation_steps=grad_accumulation_steps,
**accelerate_kwargs,
)
self.logger = logger
if self.logger == "wandb":
if exists(wandb_resume_id):
init_kwargs = {
"wandb": {
"resume": "allow",
"name": wandb_run_name,
"id": wandb_resume_id,
}
}
else:
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name}}
self.accelerator.init_trackers(
project_name=wandb_project,
init_kwargs=init_kwargs,
config={
"epochs": epochs,
"learning_rate": learning_rate,
"num_warmup_updates": num_warmup_updates,
"batch_size": batch_size,
"batch_size_type": batch_size_type,
"max_samples": max_samples,
"grad_accumulation_steps": grad_accumulation_steps,
"max_grad_norm": max_grad_norm,
"gpus": self.accelerator.num_processes,
},
)
elif self.logger == "tensorboard":
from torch.utils.tensorboard import SummaryWriter
self.writer = SummaryWriter(log_dir=f"runs/{wandb_run_name}")
self.model = model
self.vocab_size = vocab_size
self.vocab_char_map = vocab_char_map
self.process_token_to_id = process_token_to_id
assert loss_fn in ["L1", "CE", "L1_and_CE"]
self.loss_fn = loss_fn
self.lambda_L1 = lambda_L1
self.n_class = n_class
self.n_frame_per_class = n_frame_per_class
self.gumbel_tau = gumbel_tau
self.epochs = epochs
self.num_warmup_updates = num_warmup_updates
self.save_per_updates = save_per_updates
self.last_per_steps = default(
last_per_steps, save_per_updates * grad_accumulation_steps
)
self.checkpoint_path = default(checkpoint_path, "ckpts/test_e2-tts")
self.batch_size = batch_size
self.batch_size_type = batch_size_type
self.max_samples = max_samples
self.grad_accumulation_steps = grad_accumulation_steps
self.max_grad_norm = max_grad_norm
if bnb_optimizer:
import bitsandbytes as bnb
self.optimizer = bnb.optim.AdamW8bit(model.parameters(), lr=learning_rate)
else:
self.optimizer = AdamW(model.parameters(), lr=learning_rate)
self.model, self.optimizer = self.accelerator.prepare(
self.model, self.optimizer
)
@property
def is_main(self):
return self.accelerator.is_main_process
def save_checkpoint(self, step, last=False):
self.accelerator.wait_for_everyone()
if self.is_main:
checkpoint = dict(
model_state_dict=self.accelerator.unwrap_model(self.model).state_dict(),
optimizer_state_dict=self.accelerator.unwrap_model(
self.optimizer
).state_dict(),
scheduler_state_dict=self.scheduler.state_dict(),
step=step,
)
if not os.path.exists(self.checkpoint_path):
os.makedirs(self.checkpoint_path)
if last:
self.accelerator.save(
checkpoint, f"{self.checkpoint_path}/model_last.pt"
)
else:
self.accelerator.save(
checkpoint, f"{self.checkpoint_path}/model_{step}.pt"
)
def load_checkpoint(self):
if (
not exists(self.checkpoint_path)
or not os.path.exists(self.checkpoint_path)
or not any(
filename.endswith(".pt")
for filename in os.listdir(self.checkpoint_path)
)
):
return 0
self.accelerator.wait_for_everyone()
if "model_last.pt" in os.listdir(self.checkpoint_path):
latest_checkpoint = "model_last.pt"
else:
latest_checkpoint = sorted(
[f for f in os.listdir(self.checkpoint_path) if f.endswith(".pt")],
key=lambda x: int("".join(filter(str.isdigit, x))),
)[-1]
print(f"To load from {latest_checkpoint}.")
# checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", map_location=self.accelerator.device) # rather use accelerator.load_state ಥ_ಥ
checkpoint = torch.load(
f"{self.checkpoint_path}/{latest_checkpoint}",
weights_only=True,
map_location="cpu",
)
print(f"Loaded from {latest_checkpoint}.")
if "step" in checkpoint:
# patch for backward compatibility, 305e3ea
for key in [
"mel_spec.mel_stft.mel_scale.fb",
"mel_spec.mel_stft.spectrogram.window",
]:
if key in checkpoint["model_state_dict"]:
del checkpoint["model_state_dict"][key]
self.accelerator.unwrap_model(self.model).load_state_dict(
checkpoint["model_state_dict"]
)
self.accelerator.unwrap_model(self.optimizer).load_state_dict(
checkpoint["optimizer_state_dict"]
)
if self.scheduler:
self.scheduler.load_state_dict(checkpoint["scheduler_state_dict"])
step = checkpoint["step"]
else:
checkpoint["model_state_dict"] = {
k.replace("ema_model.", ""): v
for k, v in checkpoint["ema_model_state_dict"].items()
if k not in ["initted", "step"]
}
self.accelerator.unwrap_model(self.model).load_state_dict(
checkpoint["model_state_dict"]
)
step = 0
del checkpoint
gc.collect()
print(f"Exit load_checkpoint.")
return step
def validate(self, valid_dataloader, global_step):
"""
Runs evaluation on the validation set, computes the average loss,
and logs the average validation loss along with the CTC decoded strings.
"""
self.model.eval()
total_valid_loss = 0.0
total_sec_error = 0.0
count = 0
# Iterate over the validation dataloader
with torch.no_grad():
for batch in valid_dataloader:
# Inputs
mel = batch["mel"].permute(0, 2, 1) # (B, L_mel, D)
text = batch["text"]
if self.process_token_to_id:
text_ids = list_str_to_idx(text, self.vocab_char_map).to(mel.device)
text_ids = text_ids.masked_fill(text_ids == -1, self.vocab_size)
else:
text_ids = text
# Targets
mel_lengths = batch["mel_lengths"]
tar_lengths = calculate_remaining_lengths(mel_lengths)
predictions = self.model(text_ids=text_ids, mel=mel)
if self.loss_fn == "L1":
est_lengths = predictions
loss = masked_l1_loss(
est_lengths=est_lengths, tar_lengths=tar_lengths
)
frame_error = loss
elif self.loss_fn == "CE":
tar_length_labels = (tar_lengths // self.n_frame_per_class).clamp(
min=0, max=self.n_class - 1
) # [0, 1, ..., n_class-1]
est_length_logtis = predictions
est_length_labels = torch.argmax(est_length_logtis, dim=-1)
loss = masked_cross_entropy_loss(
est_length_logits=est_length_logtis,
tar_length_labels=tar_length_labels,
)
est_lengths = est_length_labels * self.n_frame_per_class
frame_error = masked_l1_loss(
est_lengths=est_lengths, tar_lengths=tar_lengths
)
elif self.loss_fn == "L1_and_CE":
tar_length_labels = (tar_lengths // self.n_frame_per_class).clamp(
min=0, max=self.n_class - 1
) # [0, 1, ..., n_class-1]
est_length_logtis = predictions
est_length_1hots = F.gumbel_softmax(
est_length_logtis, tau=self.gumbel_tau, hard=True, dim=-1
)
length_values = (
torch.arange(
self.n_class, device=est_length_1hots.device
).float()
* self.n_frame_per_class
)
est_lengths = (est_length_1hots * length_values).sum(-1)
loss_CE = masked_cross_entropy_loss(
est_length_logits=est_length_logtis,
tar_length_labels=tar_length_labels,
)
loss_L1 = masked_l1_loss(
est_lengths=est_lengths, tar_lengths=tar_lengths
)
loss = loss_CE + self.lambda_L1 * loss_L1
frame_error = loss_L1
else:
raise NotImplementedError(self.loss_fn)
sec_error = frame_error * 256 / 24000
total_sec_error += sec_error.item()
total_valid_loss += loss.item()
count += 1
avg_valid_loss = total_valid_loss / count if count > 0 else 0.0
avg_valid_sec_error = total_sec_error / count if count > 0 else 0.0
# Log validation metrics
self.accelerator.log(
{f"valid_loss": avg_valid_loss, f"valid_sec_error": avg_valid_sec_error},
step=global_step,
)
self.model.train()
def train(
self,
train_dataset: Dataset,
valid_dataset: Dataset,
num_workers=64,
resumable_with_seed: int = None,
):
if exists(resumable_with_seed):
generator = torch.Generator()
generator.manual_seed(resumable_with_seed)
else:
generator = None
# Create training dataloader using the appropriate batching strategy
if self.batch_size_type == "sample":
train_dataloader = DataLoader(
train_dataset,
collate_fn=collate_fn,
num_workers=num_workers,
pin_memory=True,
persistent_workers=True,
batch_size=self.batch_size,
shuffle=True,
generator=generator,
)
# Create validation dataloader (always sequential, no shuffling)
valid_dataloader = DataLoader(
valid_dataset,
collate_fn=collate_fn,
num_workers=num_workers,
pin_memory=True,
batch_size=self.batch_size,
shuffle=False,
)
elif self.batch_size_type == "frame":
self.accelerator.even_batches = False
sampler = SequentialSampler(train_dataset)
batch_sampler = DynamicBatchSampler(
sampler,
self.batch_size,
max_samples=self.max_samples,
random_seed=resumable_with_seed,
drop_last=False,
)
train_dataloader = DataLoader(
train_dataset,
collate_fn=collate_fn,
num_workers=num_workers,
pin_memory=True,
persistent_workers=True,
batch_sampler=batch_sampler,
)
sampler = SequentialSampler(valid_dataset)
batch_sampler = DynamicBatchSampler(
sampler,
self.batch_size,
max_samples=self.max_samples,
random_seed=resumable_with_seed,
drop_last=False,
)
# Create validation dataloader (always sequential, no shuffling)
valid_dataloader = DataLoader(
valid_dataset,
collate_fn=collate_fn,
num_workers=num_workers,
pin_memory=True,
persistent_workers=True,
batch_sampler=batch_sampler,
)
else:
raise ValueError(
f"batch_size_type must be either 'sample' or 'frame', but received {self.batch_size_type}"
)
# accelerator.prepare() dispatches batches to devices;
# which means the length of dataloader calculated before, should consider the number of devices
warmup_steps = (
self.num_warmup_updates * self.accelerator.num_processes
) # consider a fixed warmup steps while using accelerate multi-gpu ddp
# otherwise by default with split_batches=False, warmup steps change with num_processes
total_steps = len(train_dataloader) * self.epochs / self.grad_accumulation_steps
decay_steps = total_steps - warmup_steps
warmup_scheduler = LinearLR(
self.optimizer, start_factor=1e-8, end_factor=1.0, total_iters=warmup_steps
)
decay_scheduler = LinearLR(
self.optimizer, start_factor=1.0, end_factor=1e-8, total_iters=decay_steps
)
self.scheduler = SequentialLR(
self.optimizer,
schedulers=[warmup_scheduler, decay_scheduler],
milestones=[warmup_steps],
)
train_dataloader, self.scheduler = self.accelerator.prepare(
train_dataloader, self.scheduler
) # actual steps = 1 gpu steps / gpus
start_step = self.load_checkpoint()
global_step = start_step
valid_dataloader = self.accelerator.prepare(valid_dataloader)
if exists(resumable_with_seed):
orig_epoch_step = len(train_dataloader)
skipped_epoch = int(start_step // orig_epoch_step)
skipped_batch = start_step % orig_epoch_step
skipped_dataloader = self.accelerator.skip_first_batches(
train_dataloader, num_batches=skipped_batch
)
else:
skipped_epoch = 0
for epoch in range(skipped_epoch, self.epochs):
self.model.train()
if exists(resumable_with_seed) and epoch == skipped_epoch:
progress_bar = tqdm(
skipped_dataloader,
desc=f"Epoch {epoch+1}/{self.epochs}",
unit="step",
disable=not self.accelerator.is_local_main_process,
initial=skipped_batch,
total=orig_epoch_step,
)
else:
progress_bar = tqdm(
train_dataloader,
desc=f"Epoch {epoch+1}/{self.epochs}",
unit="step",
disable=not self.accelerator.is_local_main_process,
)
for batch in progress_bar:
with self.accelerator.accumulate(self.model):
# Inputs
mel = batch["mel"].permute(0, 2, 1) # (B, L_mel, D)
text = batch["text"]
if self.process_token_to_id:
text_ids = list_str_to_idx(text, self.vocab_char_map).to(
mel.device
)
text_ids = text_ids.masked_fill(text_ids == -1, self.vocab_size)
else:
text_ids = text
# Targets
mel_lengths = batch["mel_lengths"]
tar_lengths = calculate_remaining_lengths(mel_lengths)
predictions = self.model(text_ids=text_ids, mel=mel)
if self.loss_fn == "L1":
est_lengths = predictions
loss = masked_l1_loss(
est_lengths=est_lengths, tar_lengths=tar_lengths
)
with torch.no_grad():
frame_error = loss
sec_error = frame_error * 256 / 24000
log_dict = {
"loss": loss.item(),
"loss_L1": loss.item(),
"sec_error": sec_error.item(),
"lr": self.scheduler.get_last_lr()[0],
}
elif self.loss_fn == "CE":
tar_length_labels = (
tar_lengths // self.n_frame_per_class
).clamp(
min=0, max=self.n_class - 1
) # [0, 1, ..., n_class-1]
est_length_logtis = predictions
est_length_labels = torch.argmax(est_length_logtis, dim=-1)
loss = masked_cross_entropy_loss(
est_length_logits=est_length_logtis,
tar_length_labels=tar_length_labels,
)
with torch.no_grad():
est_lengths = est_length_labels * self.n_frame_per_class
frame_error = masked_l1_loss(
est_lengths=est_lengths, tar_lengths=tar_lengths
)
sec_error = frame_error * 256 / 24000
log_dict = {
"loss": loss.item(),
"loss_CE": loss.item(),
"sec_error": sec_error.item(),
"lr": self.scheduler.get_last_lr()[0],
}
elif self.loss_fn == "L1_and_CE":
tar_length_labels = (
tar_lengths // self.n_frame_per_class
).clamp(
min=0, max=self.n_class - 1
) # [0, 1, ..., n_class-1]
est_length_logtis = predictions
est_length_1hots = F.gumbel_softmax(
est_length_logtis, tau=self.gumbel_tau, hard=True, dim=-1
)
length_values = (
torch.arange(
self.n_class, device=est_length_1hots.device
).float()
* self.n_frame_per_class
)
est_lengths = (est_length_1hots * length_values).sum(-1)
loss_CE = masked_cross_entropy_loss(
est_length_logits=est_length_logtis,
tar_length_labels=tar_length_labels,
)
loss_L1 = masked_l1_loss(
est_lengths=est_lengths, tar_lengths=tar_lengths
)
loss = loss_CE + self.lambda_L1 * loss_L1
with torch.no_grad():
frame_error = loss_L1
sec_error = frame_error * 256 / 24000
log_dict = {
"loss": loss.item(),
"loss_L1": loss_L1.item(),
"loss_CE": loss_CE.item(),
"sec_error": sec_error.item(),
"lr": self.scheduler.get_last_lr()[0],
}
else:
raise NotImplementedError(self.loss_fn)
self.accelerator.backward(loss)
if self.max_grad_norm > 0 and self.accelerator.sync_gradients:
self.accelerator.clip_grad_norm_(
self.model.parameters(), self.max_grad_norm
)
self.optimizer.step()
self.scheduler.step()
self.optimizer.zero_grad()
global_step += 1
if self.accelerator.is_local_main_process:
self.accelerator.log(log_dict, step=global_step)
progress_bar.set_postfix(step=str(global_step), loss=loss.item())
if (
global_step % (self.save_per_updates * self.grad_accumulation_steps)
== 0
):
self.save_checkpoint(global_step)
# if self.log_samples and self.accelerator.is_local_main_process:
# Run validation at the end of each epoch (only on the main process)
if self.accelerator.is_local_main_process:
self.validate(valid_dataloader, global_step)
# if global_step % self.last_per_steps == 0:
# self.save_checkpoint(global_step, last=True)
self.save_checkpoint(global_step, last=True)
self.accelerator.end_training()
|