File size: 43,158 Bytes
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
 
39d2f14
 
 
 
 
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
 
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
 
597cecf
 
 
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
 
 
 
39d2f14
 
597cecf
 
 
 
 
 
39d2f14
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
 
 
 
39d2f14
 
597cecf
 
 
 
 
 
39d2f14
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
39d2f14
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
 
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
597cecf
 
 
 
 
 
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
 
 
39d2f14
 
 
 
 
 
 
597cecf
 
39d2f14
 
 
 
 
597cecf
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
 
 
 
 
 
 
39d2f14
 
 
 
 
 
 
597cecf
 
 
 
 
39d2f14
 
 
597cecf
 
 
 
 
 
39d2f14
597cecf
 
 
 
 
 
 
 
39d2f14
 
 
 
597cecf
 
 
39d2f14
 
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
# ruff: noqa: E402
# Above allows ruff to ignore E402: module level import not at top of file

import gc
import json
import os
import re
import tempfile
from collections import OrderedDict
from functools import lru_cache
from importlib.resources import files

import click
import gradio as gr
import numpy as np
import soundfile as sf
import torch
import torchaudio
from cached_path import cached_path
from transformers import AutoModelForCausalLM, AutoTokenizer

try:
    import spaces

    USING_SPACES = True
except ImportError:
    USING_SPACES = False


def gpu_decorator(func):
    if USING_SPACES:
        return spaces.GPU(func)
    else:
        return func


from f5_tts.infer.utils_infer import (infer_process, load_model, load_vocoder,
                                      preprocess_ref_audio_text,
                                      remove_silence_for_generated_wav,
                                      save_spectrogram, tempfile_kwargs)
from f5_tts.model import DiT, UNetT

DEFAULT_TTS_MODEL = "F5-TTS_v1"
tts_model_choice = DEFAULT_TTS_MODEL

DEFAULT_TTS_MODEL_CFG = [
    "hf://SWivid/F5-TTS/F5TTS_v1_Base/model_1250000.safetensors",
    "hf://SWivid/F5-TTS/F5TTS_v1_Base/vocab.txt",
    json.dumps(
        dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
    ),
]


# load models

vocoder = load_vocoder()


def load_f5tts():
    ckpt_path = str(cached_path(DEFAULT_TTS_MODEL_CFG[0]))
    F5TTS_model_cfg = json.loads(DEFAULT_TTS_MODEL_CFG[2])
    return load_model(DiT, F5TTS_model_cfg, ckpt_path)


def load_e2tts():
    ckpt_path = str(
        cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors")
    )
    E2TTS_model_cfg = dict(
        dim=1024, depth=24, heads=16, ff_mult=4, text_mask_padding=False, pe_attn_head=1
    )
    return load_model(UNetT, E2TTS_model_cfg, ckpt_path)


def load_custom(ckpt_path: str, vocab_path="", model_cfg=None):
    ckpt_path, vocab_path = ckpt_path.strip(), vocab_path.strip()
    if ckpt_path.startswith("hf://"):
        ckpt_path = str(cached_path(ckpt_path))
    if vocab_path.startswith("hf://"):
        vocab_path = str(cached_path(vocab_path))
    if model_cfg is None:
        model_cfg = json.loads(DEFAULT_TTS_MODEL_CFG[2])
    elif isinstance(model_cfg, str):
        model_cfg = json.loads(model_cfg)
    return load_model(DiT, model_cfg, ckpt_path, vocab_file=vocab_path)


F5TTS_ema_model = load_f5tts()
E2TTS_ema_model = load_e2tts() if USING_SPACES else None
custom_ema_model, pre_custom_path = None, ""

chat_model_state = None
chat_tokenizer_state = None


@gpu_decorator
def chat_model_inference(messages, model, tokenizer):
    """Generate response using Qwen"""
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True,
    )

    model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
    generated_ids = model.generate(
        **model_inputs,
        max_new_tokens=512,
        temperature=0.7,
        top_p=0.95,
    )

    generated_ids = [
        output_ids[len(input_ids) :]
        for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]
    return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]


@gpu_decorator
def load_text_from_file(file):
    if file:
        with open(file, "r", encoding="utf-8") as f:
            text = f.read().strip()
    else:
        text = ""
    return gr.update(value=text)


@lru_cache(maxsize=1000)  # NOTE. need to ensure params of infer() hashable
@gpu_decorator
def infer(
    ref_audio_orig,
    ref_text,
    gen_text,
    model,
    remove_silence,
    seed,
    cross_fade_duration=0.15,
    nfe_step=32,
    speed=1,
    show_info=gr.Info,
):
    if not ref_audio_orig:
        gr.Warning("Please provide reference audio.")
        return gr.update(), gr.update(), ref_text

    # Set inference seed
    if seed < 0 or seed > 2**31 - 1:
        gr.Warning("Seed must in range 0 ~ 2147483647. Using random seed instead.")
        seed = np.random.randint(0, 2**31 - 1)
    torch.manual_seed(seed)
    used_seed = seed

    if not gen_text.strip():
        gr.Warning("Please enter text to generate or upload a text file.")
        return gr.update(), gr.update(), ref_text

    ref_audio, ref_text = preprocess_ref_audio_text(
        ref_audio_orig, ref_text, show_info=show_info
    )

    if model == DEFAULT_TTS_MODEL:
        ema_model = F5TTS_ema_model
    elif model == "E2-TTS":
        global E2TTS_ema_model
        if E2TTS_ema_model is None:
            show_info("Loading E2-TTS model...")
            E2TTS_ema_model = load_e2tts()
        ema_model = E2TTS_ema_model
    elif isinstance(model, tuple) and model[0] == "Custom":
        assert not USING_SPACES, "Only official checkpoints allowed in Spaces."
        global custom_ema_model, pre_custom_path
        if pre_custom_path != model[1]:
            show_info("Loading Custom TTS model...")
            custom_ema_model = load_custom(
                model[1], vocab_path=model[2], model_cfg=model[3]
            )
            pre_custom_path = model[1]
        ema_model = custom_ema_model

    final_wave, final_sample_rate, combined_spectrogram = infer_process(
        ref_audio,
        ref_text,
        gen_text,
        ema_model,
        vocoder,
        cross_fade_duration=cross_fade_duration,
        nfe_step=nfe_step,
        speed=speed,
        show_info=show_info,
        progress=gr.Progress(),
    )

    # Remove silence
    if remove_silence:
        with tempfile.NamedTemporaryFile(suffix=".wav", **tempfile_kwargs) as f:
            temp_path = f.name
        try:
            sf.write(temp_path, final_wave, final_sample_rate)
            remove_silence_for_generated_wav(f.name)
            final_wave, _ = torchaudio.load(f.name)
        finally:
            os.unlink(temp_path)
        final_wave = final_wave.squeeze().cpu().numpy()

    # Save the spectrogram
    with tempfile.NamedTemporaryFile(
        suffix=".png", **tempfile_kwargs
    ) as tmp_spectrogram:
        spectrogram_path = tmp_spectrogram.name
    save_spectrogram(combined_spectrogram, spectrogram_path)

    return (final_sample_rate, final_wave), spectrogram_path, ref_text, used_seed


with gr.Blocks() as app_tts:
    gr.Markdown("# Batched TTS")
    ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
    with gr.Row():
        gen_text_input = gr.Textbox(
            label="Text to Generate",
            lines=10,
            max_lines=40,
            scale=4,
        )
        gen_text_file = gr.File(
            label="Load Text to Generate from File (.txt)", file_types=[".txt"], scale=1
        )
    generate_btn = gr.Button("Synthesize", variant="primary")
    with gr.Accordion("Advanced Settings", open=False):
        with gr.Row():
            ref_text_input = gr.Textbox(
                label="Reference Text",
                info="Leave blank to automatically transcribe the reference audio. If you enter text or upload a file, it will override automatic transcription.",
                lines=2,
                scale=4,
            )
            ref_text_file = gr.File(
                label="Load Reference Text from File (.txt)",
                file_types=[".txt"],
                scale=1,
            )
        with gr.Row():
            randomize_seed = gr.Checkbox(
                label="Randomize Seed",
                info="Check to use a random seed for each generation. Uncheck to use the seed specified.",
                value=True,
                scale=3,
            )
            seed_input = gr.Number(show_label=False, value=0, precision=0, scale=1)
            with gr.Column(scale=4):
                remove_silence = gr.Checkbox(
                    label="Remove Silences",
                    info="If undesired long silence(s) produced, turn on to automatically detect and crop.",
                    value=False,
                )
        speed_slider = gr.Slider(
            label="Speed",
            minimum=0.3,
            maximum=2.0,
            value=1.0,
            step=0.1,
            info="Adjust the speed of the audio.",
        )
        nfe_slider = gr.Slider(
            label="NFE Steps",
            minimum=4,
            maximum=64,
            value=32,
            step=2,
            info="Set the number of denoising steps.",
        )
        cross_fade_duration_slider = gr.Slider(
            label="Cross-Fade Duration (s)",
            minimum=0.0,
            maximum=1.0,
            value=0.15,
            step=0.01,
            info="Set the duration of the cross-fade between audio clips.",
        )

    audio_output = gr.Audio(label="Synthesized Audio")
    spectrogram_output = gr.Image(label="Spectrogram")

    @gpu_decorator
    def basic_tts(
        ref_audio_input,
        ref_text_input,
        gen_text_input,
        remove_silence,
        randomize_seed,
        seed_input,
        cross_fade_duration_slider,
        nfe_slider,
        speed_slider,
    ):
        if randomize_seed:
            seed_input = np.random.randint(0, 2**31 - 1)

        audio_out, spectrogram_path, ref_text_out, used_seed = infer(
            ref_audio_input,
            ref_text_input,
            gen_text_input,
            tts_model_choice,
            remove_silence,
            seed=seed_input,
            cross_fade_duration=cross_fade_duration_slider,
            nfe_step=nfe_slider,
            speed=speed_slider,
        )
        return audio_out, spectrogram_path, ref_text_out, used_seed

    gen_text_file.upload(
        load_text_from_file,
        inputs=[gen_text_file],
        outputs=[gen_text_input],
    )

    ref_text_file.upload(
        load_text_from_file,
        inputs=[ref_text_file],
        outputs=[ref_text_input],
    )

    ref_audio_input.clear(
        lambda: [None, None],
        None,
        [ref_text_input, ref_text_file],
    )

    generate_btn.click(
        basic_tts,
        inputs=[
            ref_audio_input,
            ref_text_input,
            gen_text_input,
            remove_silence,
            randomize_seed,
            seed_input,
            cross_fade_duration_slider,
            nfe_slider,
            speed_slider,
        ],
        outputs=[audio_output, spectrogram_output, ref_text_input, seed_input],
    )


def parse_speechtypes_text(gen_text):
    # Pattern to find {str} or {"name": str, "seed": int, "speed": float}
    pattern = r"(\{.*?\})"

    # Split the text by the pattern
    tokens = re.split(pattern, gen_text)

    segments = []

    current_type_dict = {
        "name": "Regular",
        "seed": -1,
        "speed": 1.0,
    }

    for i in range(len(tokens)):
        if i % 2 == 0:
            # This is text
            text = tokens[i].strip()
            if text:
                current_type_dict["text"] = text
                segments.append(current_type_dict)
        else:
            # This is type
            type_str = tokens[i].strip()
            try:  # if type dict
                current_type_dict = json.loads(type_str)
            except json.decoder.JSONDecodeError:
                type_str = type_str[1:-1]  # remove brace {}
                current_type_dict = {"name": type_str, "seed": -1, "speed": 1.0}

    return segments


with gr.Blocks() as app_multistyle:
    # New section for multistyle generation
    gr.Markdown(
        """
    # Multiple Speech-Type Generation

    This section allows you to generate multiple speech types or multiple people's voices. Enter your text in the format shown below, or upload a .txt file with the same format. The system will generate speech using the appropriate type. If unspecified, the model will use the regular speech type. The current speech type will be used until the next speech type is specified.
    """
    )

    with gr.Row():
        gr.Markdown(
            """
            **Example Input:** <br>
            {Regular} Hello, I'd like to order a sandwich please. <br>
            {Surprised} What do you mean you're out of bread? <br>
            {Sad} I really wanted a sandwich though... <br>
            {Angry} You know what, darn you and your little shop! <br>
            {Whisper} I'll just go back home and cry now. <br>
            {Shouting} Why me?!
            """
        )

        gr.Markdown(
            """
            **Example Input 2:** <br>
            {"name": "Speaker1_Happy", "seed": -1, "speed": 1} Hello, I'd like to order a sandwich please. <br>
            {"name": "Speaker2_Regular", "seed": -1, "speed": 1} Sorry, we're out of bread. <br>
            {"name": "Speaker1_Sad", "seed": -1, "speed": 1} I really wanted a sandwich though... <br>
            {"name": "Speaker2_Whisper", "seed": -1, "speed": 1} I'll give you the last one I was hiding.
            """
        )

    gr.Markdown(
        'Upload different audio clips for each speech type. The first speech type is mandatory. You can add additional speech types by clicking the "Add Speech Type" button.'
    )

    # Regular speech type (mandatory)
    with gr.Row(variant="compact") as regular_row:
        with gr.Column(scale=1, min_width=160):
            regular_name = gr.Textbox(value="Regular", label="Speech Type Name")
            regular_insert = gr.Button("Insert Label", variant="secondary")
        with gr.Column(scale=3):
            regular_audio = gr.Audio(label="Regular Reference Audio", type="filepath")
        with gr.Column(scale=3):
            regular_ref_text = gr.Textbox(label="Reference Text (Regular)", lines=4)
            with gr.Row():
                regular_seed_slider = gr.Slider(
                    show_label=False,
                    minimum=-1,
                    maximum=999,
                    value=-1,
                    step=1,
                    info="Seed, -1 for random",
                )
                regular_speed_slider = gr.Slider(
                    show_label=False,
                    minimum=0.3,
                    maximum=2.0,
                    value=1.0,
                    step=0.1,
                    info="Adjust the speed",
                )
        with gr.Column(scale=1, min_width=160):
            regular_ref_text_file = gr.File(
                label="Load Reference Text from File (.txt)", file_types=[".txt"]
            )

    # Regular speech type (max 100)
    max_speech_types = 100
    speech_type_rows = [regular_row]
    speech_type_names = [regular_name]
    speech_type_audios = [regular_audio]
    speech_type_ref_texts = [regular_ref_text]
    speech_type_ref_text_files = [regular_ref_text_file]
    speech_type_seeds = [regular_seed_slider]
    speech_type_speeds = [regular_speed_slider]
    speech_type_delete_btns = [None]
    speech_type_insert_btns = [regular_insert]

    # Additional speech types (99 more)
    for i in range(max_speech_types - 1):
        with gr.Row(variant="compact", visible=False) as row:
            with gr.Column(scale=1, min_width=160):
                name_input = gr.Textbox(label="Speech Type Name")
                insert_btn = gr.Button("Insert Label", variant="secondary")
                delete_btn = gr.Button("Delete Type", variant="stop")
            with gr.Column(scale=3):
                audio_input = gr.Audio(label="Reference Audio", type="filepath")
            with gr.Column(scale=3):
                ref_text_input = gr.Textbox(label="Reference Text", lines=4)
                with gr.Row():
                    seed_input = gr.Slider(
                        show_label=False,
                        minimum=-1,
                        maximum=999,
                        value=-1,
                        step=1,
                        info="Seed. -1 for random",
                    )
                    speed_input = gr.Slider(
                        show_label=False,
                        minimum=0.3,
                        maximum=2.0,
                        value=1.0,
                        step=0.1,
                        info="Adjust the speed",
                    )
            with gr.Column(scale=1, min_width=160):
                ref_text_file_input = gr.File(
                    label="Load Reference Text from File (.txt)", file_types=[".txt"]
                )
        speech_type_rows.append(row)
        speech_type_names.append(name_input)
        speech_type_audios.append(audio_input)
        speech_type_ref_texts.append(ref_text_input)
        speech_type_ref_text_files.append(ref_text_file_input)
        speech_type_seeds.append(seed_input)
        speech_type_speeds.append(speed_input)
        speech_type_delete_btns.append(delete_btn)
        speech_type_insert_btns.append(insert_btn)

    # Global logic for all speech types
    for i in range(max_speech_types):
        speech_type_audios[i].clear(
            lambda: [None, None],
            None,
            [speech_type_ref_texts[i], speech_type_ref_text_files[i]],
        )
        speech_type_ref_text_files[i].upload(
            load_text_from_file,
            inputs=[speech_type_ref_text_files[i]],
            outputs=[speech_type_ref_texts[i]],
        )

    # Button to add speech type
    add_speech_type_btn = gr.Button("Add Speech Type")

    # Keep track of autoincrement of speech types, no roll back
    speech_type_count = 1

    # Function to add a speech type
    def add_speech_type_fn():
        row_updates = [gr.update() for _ in range(max_speech_types)]
        global speech_type_count
        if speech_type_count < max_speech_types:
            row_updates[speech_type_count] = gr.update(visible=True)
            speech_type_count += 1
        else:
            gr.Warning(
                "Exhausted maximum number of speech types. Consider restart the app."
            )
        return row_updates

    add_speech_type_btn.click(add_speech_type_fn, outputs=speech_type_rows)

    # Function to delete a speech type
    def delete_speech_type_fn():
        return gr.update(visible=False), None, None, None, None

    # Update delete button clicks and ref text file changes
    for i in range(1, len(speech_type_delete_btns)):
        speech_type_delete_btns[i].click(
            delete_speech_type_fn,
            outputs=[
                speech_type_rows[i],
                speech_type_names[i],
                speech_type_audios[i],
                speech_type_ref_texts[i],
                speech_type_ref_text_files[i],
            ],
        )

    # Text input for the prompt
    with gr.Row():
        gen_text_input_multistyle = gr.Textbox(
            label="Text to Generate",
            lines=10,
            max_lines=40,
            scale=4,
            placeholder="Enter the script with speaker names (or emotion types) at the start of each block, e.g.:\n\n{Regular} Hello, I'd like to order a sandwich please.\n{Surprised} What do you mean you're out of bread?\n{Sad} I really wanted a sandwich though...\n{Angry} You know what, darn you and your little shop!\n{Whisper} I'll just go back home and cry now.\n{Shouting} Why me?!",
        )
        gen_text_file_multistyle = gr.File(
            label="Load Text to Generate from File (.txt)", file_types=[".txt"], scale=1
        )

    def make_insert_speech_type_fn(index):
        def insert_speech_type_fn(
            current_text, speech_type_name, speech_type_seed, speech_type_speed
        ):
            current_text = current_text or ""
            if not speech_type_name:
                gr.Warning("Please enter speech type name before insert.")
                return current_text
            speech_type_dict = {
                "name": speech_type_name,
                "seed": speech_type_seed,
                "speed": speech_type_speed,
            }
            updated_text = current_text + json.dumps(speech_type_dict) + " "
            return updated_text

        return insert_speech_type_fn

    for i, insert_btn in enumerate(speech_type_insert_btns):
        insert_fn = make_insert_speech_type_fn(i)
        insert_btn.click(
            insert_fn,
            inputs=[
                gen_text_input_multistyle,
                speech_type_names[i],
                speech_type_seeds[i],
                speech_type_speeds[i],
            ],
            outputs=gen_text_input_multistyle,
        )

    with gr.Accordion("Advanced Settings", open=True):
        with gr.Row():
            with gr.Column():
                show_cherrypick_multistyle = gr.Checkbox(
                    label="Show Cherry-pick Interface",
                    info="Turn on to show interface, picking seeds from previous generations.",
                    value=False,
                )
            with gr.Column():
                remove_silence_multistyle = gr.Checkbox(
                    label="Remove Silences",
                    info="Turn on to automatically detect and crop long silences.",
                    value=True,
                )

    # Generate button
    generate_multistyle_btn = gr.Button(
        "Generate Multi-Style Speech", variant="primary"
    )

    # Output audio
    audio_output_multistyle = gr.Audio(label="Synthesized Audio")

    # Used seed gallery
    cherrypick_interface_multistyle = gr.Textbox(
        label="Cherry-pick Interface",
        lines=10,
        max_lines=40,
        show_copy_button=True,
        interactive=False,
        visible=False,
    )

    # Logic control to show/hide the cherrypick interface
    show_cherrypick_multistyle.change(
        lambda is_visible: gr.update(visible=is_visible),
        show_cherrypick_multistyle,
        cherrypick_interface_multistyle,
    )

    # Function to load text to generate from file
    gen_text_file_multistyle.upload(
        load_text_from_file,
        inputs=[gen_text_file_multistyle],
        outputs=[gen_text_input_multistyle],
    )

    @gpu_decorator
    def generate_multistyle_speech(
        gen_text,
        *args,
    ):
        speech_type_names_list = args[:max_speech_types]
        speech_type_audios_list = args[max_speech_types : 2 * max_speech_types]
        speech_type_ref_texts_list = args[2 * max_speech_types : 3 * max_speech_types]
        remove_silence = args[3 * max_speech_types]
        # Collect the speech types and their audios into a dict
        speech_types = OrderedDict()

        ref_text_idx = 0
        for name_input, audio_input, ref_text_input in zip(
            speech_type_names_list, speech_type_audios_list, speech_type_ref_texts_list
        ):
            if name_input and audio_input:
                speech_types[name_input] = {
                    "audio": audio_input,
                    "ref_text": ref_text_input,
                }
            else:
                speech_types[f"@{ref_text_idx}@"] = {"audio": "", "ref_text": ""}
            ref_text_idx += 1

        # Parse the gen_text into segments
        segments = parse_speechtypes_text(gen_text)

        # For each segment, generate speech
        generated_audio_segments = []
        current_type_name = "Regular"
        inference_meta_data = ""

        for segment in segments:
            name = segment["name"]
            seed_input = segment["seed"]
            speed = segment["speed"]
            text = segment["text"]

            if name in speech_types:
                current_type_name = name
            else:
                gr.Warning(
                    f"Type {name} is not available, will use Regular as default."
                )
                current_type_name = "Regular"

            try:
                ref_audio = speech_types[current_type_name]["audio"]
            except KeyError:
                gr.Warning(
                    f"Please provide reference audio for type {current_type_name}."
                )
                return (
                    [None]
                    + [speech_types[name]["ref_text"] for name in speech_types]
                    + [None]
                )
            ref_text = speech_types[current_type_name].get("ref_text", "")

            if seed_input == -1:
                seed_input = np.random.randint(0, 2**31 - 1)

            # Generate or retrieve speech for this segment
            audio_out, _, ref_text_out, used_seed = infer(
                ref_audio,
                ref_text,
                text,
                tts_model_choice,
                remove_silence,
                seed=seed_input,
                cross_fade_duration=0,
                speed=speed,
                show_info=print,  # no pull to top when generating
            )
            sr, audio_data = audio_out

            generated_audio_segments.append(audio_data)
            speech_types[current_type_name]["ref_text"] = ref_text_out
            inference_meta_data += (
                json.dumps(dict(name=name, seed=used_seed, speed=speed)) + f" {text}\n"
            )

        # Concatenate all audio segments
        if generated_audio_segments:
            final_audio_data = np.concatenate(generated_audio_segments)
            return (
                [(sr, final_audio_data)]
                + [speech_types[name]["ref_text"] for name in speech_types]
                + [inference_meta_data]
            )
        else:
            gr.Warning("No audio generated.")
            return (
                [None]
                + [speech_types[name]["ref_text"] for name in speech_types]
                + [None]
            )

    generate_multistyle_btn.click(
        generate_multistyle_speech,
        inputs=[
            gen_text_input_multistyle,
        ]
        + speech_type_names
        + speech_type_audios
        + speech_type_ref_texts
        + [
            remove_silence_multistyle,
        ],
        outputs=[audio_output_multistyle]
        + speech_type_ref_texts
        + [cherrypick_interface_multistyle],
    )

    # Validation function to disable Generate button if speech types are missing
    def validate_speech_types(gen_text, regular_name, *args):
        speech_type_names_list = args

        # Collect the speech types names
        speech_types_available = set()
        if regular_name:
            speech_types_available.add(regular_name)
        for name_input in speech_type_names_list:
            if name_input:
                speech_types_available.add(name_input)

        # Parse the gen_text to get the speech types used
        segments = parse_speechtypes_text(gen_text)
        speech_types_in_text = set(segment["name"] for segment in segments)

        # Check if all speech types in text are available
        missing_speech_types = speech_types_in_text - speech_types_available

        if missing_speech_types:
            # Disable the generate button
            return gr.update(interactive=False)
        else:
            # Enable the generate button
            return gr.update(interactive=True)

    gen_text_input_multistyle.change(
        validate_speech_types,
        inputs=[gen_text_input_multistyle, regular_name] + speech_type_names,
        outputs=generate_multistyle_btn,
    )


with gr.Blocks() as app_chat:
    gr.Markdown(
        """
# Voice Chat
Have a conversation with an AI using your reference voice!
1. Upload a reference audio clip and optionally its transcript (via text or .txt file).
2. Load the chat model.
3. Record your message through your microphone or type it.
4. The AI will respond using the reference voice.
"""
    )

    chat_model_name_list = [
        "Qwen/Qwen2.5-3B-Instruct",
        "microsoft/Phi-4-mini-instruct",
    ]

    @gpu_decorator
    def load_chat_model(chat_model_name):
        show_info = gr.Info
        global chat_model_state, chat_tokenizer_state
        if chat_model_state is not None:
            chat_model_state = None
            chat_tokenizer_state = None
            gc.collect()
            torch.cuda.empty_cache()

        show_info(f"Loading chat model: {chat_model_name}")
        chat_model_state = AutoModelForCausalLM.from_pretrained(
            chat_model_name, torch_dtype="auto", device_map="auto"
        )
        chat_tokenizer_state = AutoTokenizer.from_pretrained(chat_model_name)
        show_info(f"Chat model {chat_model_name} loaded successfully!")

        return gr.update(visible=False), gr.update(visible=True)

    if USING_SPACES:
        load_chat_model(chat_model_name_list[0])

    chat_model_name_input = gr.Dropdown(
        choices=chat_model_name_list,
        value=chat_model_name_list[0],
        label="Chat Model Name",
        info="Enter the name of a HuggingFace chat model",
        allow_custom_value=not USING_SPACES,
    )
    load_chat_model_btn = gr.Button(
        "Load Chat Model", variant="primary", visible=not USING_SPACES
    )
    chat_interface_container = gr.Column(visible=USING_SPACES)

    chat_model_name_input.change(
        lambda: gr.update(visible=True),
        None,
        load_chat_model_btn,
        show_progress="hidden",
    )
    load_chat_model_btn.click(
        load_chat_model,
        inputs=[chat_model_name_input],
        outputs=[load_chat_model_btn, chat_interface_container],
    )

    with chat_interface_container:
        with gr.Row():
            with gr.Column():
                ref_audio_chat = gr.Audio(label="Reference Audio", type="filepath")
            with gr.Column():
                with gr.Accordion("Advanced Settings", open=False):
                    with gr.Row():
                        ref_text_chat = gr.Textbox(
                            label="Reference Text",
                            info="Optional: Leave blank to auto-transcribe",
                            lines=2,
                            scale=3,
                        )
                        ref_text_file_chat = gr.File(
                            label="Load Reference Text from File (.txt)",
                            file_types=[".txt"],
                            scale=1,
                        )
                    with gr.Row():
                        randomize_seed_chat = gr.Checkbox(
                            label="Randomize Seed",
                            value=True,
                            info="Uncheck to use the seed specified.",
                            scale=3,
                        )
                        seed_input_chat = gr.Number(
                            show_label=False, value=0, precision=0, scale=1
                        )
                    remove_silence_chat = gr.Checkbox(
                        label="Remove Silences",
                        value=True,
                    )
                    system_prompt_chat = gr.Textbox(
                        label="System Prompt",
                        value="You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.",
                        lines=2,
                    )

        chatbot_interface = gr.Chatbot(label="Conversation", type="messages")

        with gr.Row():
            with gr.Column():
                audio_input_chat = gr.Microphone(
                    label="Speak your message",
                    type="filepath",
                )
                audio_output_chat = gr.Audio(autoplay=True)
            with gr.Column():
                text_input_chat = gr.Textbox(
                    label="Type your message",
                    lines=1,
                )
                send_btn_chat = gr.Button("Send Message")
                clear_btn_chat = gr.Button("Clear Conversation")

        # Modify process_audio_input to generate user input
        @gpu_decorator
        def process_audio_input(conv_state, audio_path, text):
            """Handle audio or text input from user"""

            if not audio_path and not text.strip():
                return conv_state

            if audio_path:
                text = preprocess_ref_audio_text(audio_path, text)[1]
            if not text.strip():
                return conv_state

            conv_state.append({"role": "user", "content": text})
            return conv_state

        # Use model and tokenizer from state to get text response
        @gpu_decorator
        def generate_text_response(conv_state, system_prompt):
            """Generate text response from AI"""

            system_prompt_state = [{"role": "system", "content": system_prompt}]
            response = chat_model_inference(
                system_prompt_state + conv_state, chat_model_state, chat_tokenizer_state
            )

            conv_state.append({"role": "assistant", "content": response})
            return conv_state

        @gpu_decorator
        def generate_audio_response(
            conv_state, ref_audio, ref_text, remove_silence, randomize_seed, seed_input
        ):
            """Generate TTS audio for AI response"""
            if not conv_state or not ref_audio:
                return None, ref_text, seed_input

            last_ai_response = conv_state[-1]["content"]
            if not last_ai_response or conv_state[-1]["role"] != "assistant":
                return None, ref_text, seed_input

            if randomize_seed:
                seed_input = np.random.randint(0, 2**31 - 1)

            audio_result, _, ref_text_out, used_seed = infer(
                ref_audio,
                ref_text,
                last_ai_response,
                tts_model_choice,
                remove_silence,
                seed=seed_input,
                cross_fade_duration=0.15,
                speed=1.0,
                show_info=print,  # show_info=print no pull to top when generating
            )
            return audio_result, ref_text_out, used_seed

        def clear_conversation():
            """Reset the conversation"""
            return [], None

        ref_text_file_chat.upload(
            load_text_from_file,
            inputs=[ref_text_file_chat],
            outputs=[ref_text_chat],
        )

        for user_operation in [
            audio_input_chat.stop_recording,
            text_input_chat.submit,
            send_btn_chat.click,
        ]:
            user_operation(
                process_audio_input,
                inputs=[chatbot_interface, audio_input_chat, text_input_chat],
                outputs=[chatbot_interface],
            ).then(
                generate_text_response,
                inputs=[chatbot_interface, system_prompt_chat],
                outputs=[chatbot_interface],
            ).then(
                generate_audio_response,
                inputs=[
                    chatbot_interface,
                    ref_audio_chat,
                    ref_text_chat,
                    remove_silence_chat,
                    randomize_seed_chat,
                    seed_input_chat,
                ],
                outputs=[audio_output_chat, ref_text_chat, seed_input_chat],
            ).then(
                lambda: [None, None],
                None,
                [audio_input_chat, text_input_chat],
            )

        # Handle clear button or system prompt change and reset conversation
        for user_operation in [
            clear_btn_chat.click,
            system_prompt_chat.change,
            chatbot_interface.clear,
        ]:
            user_operation(
                clear_conversation,
                outputs=[chatbot_interface, audio_output_chat],
            )


with gr.Blocks() as app_credits:
    gr.Markdown(
        """
# Credits

* [mrfakename](https://github.com/fakerybakery) for the original [online demo](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
* [RootingInLoad](https://github.com/RootingInLoad) for initial chunk generation and podcast app exploration
* [jpgallegoar](https://github.com/jpgallegoar) for multiple speech-type generation & voice chat
"""
    )


with gr.Blocks() as app:
    gr.Markdown(
        f"""
# E2/F5 TTS

This is {"a local web UI for [F5 TTS](https://github.com/SWivid/F5-TTS)" if not USING_SPACES else "an online demo for [F5-TTS](https://github.com/SWivid/F5-TTS)"} with advanced batch processing support. This app supports the following TTS models:

* [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching)
* [E2 TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS)

The checkpoints currently support English and Chinese.

If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 12s with  ✂  in the bottom right corner (otherwise might have non-optimal auto-trimmed result).

**NOTE: Reference text will be automatically transcribed with Whisper if not provided. For best results, keep your reference clips short (<12s). Ensure the audio is fully uploaded before generating.**
"""
    )

    last_used_custom = files("f5_tts").joinpath(
        "infer/.cache/last_used_custom_model_info_v1.txt"
    )

    def load_last_used_custom():
        try:
            custom = []
            with open(last_used_custom, "r", encoding="utf-8") as f:
                for line in f:
                    custom.append(line.strip())
            return custom
        except FileNotFoundError:
            last_used_custom.parent.mkdir(parents=True, exist_ok=True)
            return DEFAULT_TTS_MODEL_CFG

    def switch_tts_model(new_choice):
        global tts_model_choice
        if new_choice == "Custom":  # override in case webpage is refreshed
            custom_ckpt_path, custom_vocab_path, custom_model_cfg = (
                load_last_used_custom()
            )
            tts_model_choice = (
                "Custom",
                custom_ckpt_path,
                custom_vocab_path,
                custom_model_cfg,
            )
            return (
                gr.update(visible=True, value=custom_ckpt_path),
                gr.update(visible=True, value=custom_vocab_path),
                gr.update(visible=True, value=custom_model_cfg),
            )
        else:
            tts_model_choice = new_choice
            return (
                gr.update(visible=False),
                gr.update(visible=False),
                gr.update(visible=False),
            )

    def set_custom_model(custom_ckpt_path, custom_vocab_path, custom_model_cfg):
        global tts_model_choice
        tts_model_choice = (
            "Custom",
            custom_ckpt_path,
            custom_vocab_path,
            custom_model_cfg,
        )
        with open(last_used_custom, "w", encoding="utf-8") as f:
            f.write(
                custom_ckpt_path
                + "\n"
                + custom_vocab_path
                + "\n"
                + custom_model_cfg
                + "\n"
            )

    with gr.Row():
        if not USING_SPACES:
            choose_tts_model = gr.Radio(
                choices=[DEFAULT_TTS_MODEL, "E2-TTS", "Custom"],
                label="Choose TTS Model",
                value=DEFAULT_TTS_MODEL,
            )
        else:
            choose_tts_model = gr.Radio(
                choices=[DEFAULT_TTS_MODEL, "E2-TTS"],
                label="Choose TTS Model",
                value=DEFAULT_TTS_MODEL,
            )
        custom_ckpt_path = gr.Dropdown(
            choices=[DEFAULT_TTS_MODEL_CFG[0]],
            value=load_last_used_custom()[0],
            allow_custom_value=True,
            label="Model: local_path | hf://user_id/repo_id/model_ckpt",
            visible=False,
        )
        custom_vocab_path = gr.Dropdown(
            choices=[DEFAULT_TTS_MODEL_CFG[1]],
            value=load_last_used_custom()[1],
            allow_custom_value=True,
            label="Vocab: local_path | hf://user_id/repo_id/vocab_file",
            visible=False,
        )
        custom_model_cfg = gr.Dropdown(
            choices=[
                DEFAULT_TTS_MODEL_CFG[2],
                json.dumps(
                    dict(
                        dim=1024,
                        depth=22,
                        heads=16,
                        ff_mult=2,
                        text_dim=512,
                        text_mask_padding=False,
                        conv_layers=4,
                        pe_attn_head=1,
                    )
                ),
                json.dumps(
                    dict(
                        dim=768,
                        depth=18,
                        heads=12,
                        ff_mult=2,
                        text_dim=512,
                        text_mask_padding=False,
                        conv_layers=4,
                        pe_attn_head=1,
                    )
                ),
            ],
            value=load_last_used_custom()[2],
            allow_custom_value=True,
            label="Config: in a dictionary form",
            visible=False,
        )

    choose_tts_model.change(
        switch_tts_model,
        inputs=[choose_tts_model],
        outputs=[custom_ckpt_path, custom_vocab_path, custom_model_cfg],
        show_progress="hidden",
    )
    custom_ckpt_path.change(
        set_custom_model,
        inputs=[custom_ckpt_path, custom_vocab_path, custom_model_cfg],
        show_progress="hidden",
    )
    custom_vocab_path.change(
        set_custom_model,
        inputs=[custom_ckpt_path, custom_vocab_path, custom_model_cfg],
        show_progress="hidden",
    )
    custom_model_cfg.change(
        set_custom_model,
        inputs=[custom_ckpt_path, custom_vocab_path, custom_model_cfg],
        show_progress="hidden",
    )

    gr.TabbedInterface(
        [app_tts, app_multistyle, app_chat, app_credits],
        ["Basic-TTS", "Multi-Speech", "Voice-Chat", "Credits"],
    )


@click.command()
@click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
@click.option("--host", "-H", default=None, help="Host to run the app on")
@click.option(
    "--share",
    "-s",
    default=False,
    is_flag=True,
    help="Share the app via Gradio share link",
)
@click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
@click.option(
    "--root_path",
    "-r",
    default=None,
    type=str,
    help='The root path (or "mount point") of the application, if it\'s not served from the root ("/") of the domain. Often used when the application is behind a reverse proxy that forwards requests to the application, e.g. set "/myapp" or full URL for application served at "https://example.com/myapp".',
)
@click.option(
    "--inbrowser",
    "-i",
    is_flag=True,
    default=False,
    help="Automatically launch the interface in the default web browser",
)
def main(port, host, share, api, root_path, inbrowser):
    global app
    print("Starting app...")
    app.queue(api_open=api).launch(
        server_name=host,
        server_port=port,
        share=share,
        show_api=api,
        root_path=root_path,
        inbrowser=inbrowser,
    )


if __name__ == "__main__":
    if not USING_SPACES:
        main()
    else:
        app.queue().launch()