Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,953 Bytes
39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
"""
ein notation:
b - batch
n - sequence
nt - text sequence
nw - raw wave length
d - dimension
"""
from __future__ import annotations
import torch
import torch.nn.functional as F
from torch import nn
from x_transformers.x_transformers import RotaryEmbedding
from f5_tts.model.modules import (AdaLayerNormZero_Final,
ConvPositionEmbedding, DiTBlock, MMDiTBlock,
TimestepEmbedding, get_pos_embed_indices,
precompute_freqs_cis)
from f5_tts.model.utils import (default, exists, lens_to_mask, list_str_to_idx,
list_str_to_tensor, mask_from_frac_lengths)
# text embedding
class TextEmbedding(nn.Module):
def __init__(self, out_dim, text_num_embeds):
super().__init__()
self.text_embed = nn.Embedding(
text_num_embeds + 1, out_dim
) # will use 0 as filler token
self.precompute_max_pos = 1024
self.register_buffer(
"freqs_cis",
precompute_freqs_cis(out_dim, self.precompute_max_pos),
persistent=False,
)
def forward(
self, text: int["b nt"], drop_text=False
) -> int["b nt d"]: # noqa: F722
text = text + 1
if drop_text:
text = torch.zeros_like(text)
text = self.text_embed(text)
# sinus pos emb
batch_start = torch.zeros((text.shape[0],), dtype=torch.long)
batch_text_len = text.shape[1]
pos_idx = get_pos_embed_indices(
batch_start, batch_text_len, max_pos=self.precompute_max_pos
)
text_pos_embed = self.freqs_cis[pos_idx]
text = text + text_pos_embed
return text
# noised input & masked cond audio embedding
class AudioEmbedding(nn.Module):
def __init__(self, in_dim, out_dim):
super().__init__()
self.linear = nn.Linear(2 * in_dim, out_dim)
self.conv_pos_embed = ConvPositionEmbedding(out_dim)
def forward(
self, x: float["b n d"], cond: float["b n d"], drop_audio_cond=False
): # noqa: F722
if drop_audio_cond:
cond = torch.zeros_like(cond)
x = torch.cat((x, cond), dim=-1)
x = self.linear(x)
x = self.conv_pos_embed(x) + x
return x
# Transformer backbone using MM-DiT blocks
class MMDiT(nn.Module):
def __init__(
self,
*,
dim,
text_depth=4,
depth=8,
heads=8,
dim_head=64,
dropout=0.1,
ff_mult=4,
text_num_embeds=256,
mel_dim=100,
checkpoint_activations=False,
text_encoder=True,
):
super().__init__()
self.time_embed = TimestepEmbedding(dim)
if text_encoder:
self.text_encoder = TextEncoder(
text_num_embeds=text_num_embeds,
text_dim=dim,
depth=text_depth,
heads=heads,
dim_head=dim_head,
ff_mult=ff_mult,
dropout=dropout,
)
else:
self.text_encoder = None
self.text_embed = TextEmbedding(dim, text_num_embeds)
self.audio_embed = AudioEmbedding(mel_dim, dim)
self.rotary_embed = RotaryEmbedding(dim_head)
self.dim = dim
self.depth = depth
self.transformer_blocks = nn.ModuleList(
[
MMDiTBlock(
dim=dim,
heads=heads,
dim_head=dim_head,
dropout=dropout,
ff_mult=ff_mult,
context_pre_only=i == depth - 1,
)
for i in range(depth)
]
)
self.norm_out = AdaLayerNormZero_Final(dim) # final modulation
self.proj_out = nn.Linear(dim, mel_dim)
self.checkpoint_activations = checkpoint_activations
def forward(
self,
x: float["b n d"], # nosied input audio # noqa: F722
cond: float["b n d"], # masked cond audio # noqa: F722
text: int["b nt"], # text # noqa: F722
time: float["b"] | float[""], # time step # noqa: F821 F722
drop_audio_cond, # cfg for cond audio
drop_text, # cfg for text
mask: bool["b n"] | None = None, # noqa: F722
text_mask: bool["b nt"] | None = None, # noqa: F722
):
batch = x.shape[0]
if time.ndim == 0:
time = time.repeat(batch)
# t: conditioning (time), c: context (text + masked cond audio), x: noised input audio
t = self.time_embed(time)
if self.text_encoder is not None:
c = self.text_encoder(text, t, mask=text_mask, drop_text=drop_text)
else:
c = self.text_embed(text, drop_text=drop_text)
x = self.audio_embed(x, cond, drop_audio_cond=drop_audio_cond)
seq_len = x.shape[1]
text_len = text.shape[1]
rope_audio = self.rotary_embed.forward_from_seq_len(seq_len)
rope_text = self.rotary_embed.forward_from_seq_len(text_len)
# if mask is not None:
# rope_audio = self.rotary_embed.forward_from_seq_len(seq_len + 1)
# dummy_token = torch.zeros((x.shape[0], 1, x.shape[-1]), device=x.device, dtype=x.dtype)
# x = torch.cat([x, dummy_token], dim=1) # shape is now [b, nw+1, d]
# # pad the mask so that new dummy token is always masked out
# # mask: [b, nw] -> [b, nw+1]
# false_col = torch.zeros((x.shape[0], 1), dtype=torch.bool, device=x.device)
# mask = torch.cat([mask, false_col], dim=1)
# if text_mask is not None:
# rope_text = self.rotary_embed.forward_from_seq_len(text_len + 1)
# dummy_token = torch.zeros((c.shape[0], 1, c.shape[-1]), device=c.device, dtype=c.dtype)
# c = torch.cat([c, dummy_token], dim=1) # shape is now [b, nt+1, d]
# # pad the text mask so that new dummy token is always masked out
# # text_mask: [b, nt] -> [b, nt+1]
# false_col = torch.zeros((c.shape[0], 1), dtype=torch.bool, device=c.device)
# text_mask = torch.cat([text_mask, false_col], dim=1)
for block in self.transformer_blocks:
c, x = block(
x,
c,
t,
mask=mask,
src_mask=text_mask,
rope=rope_audio,
c_rope=rope_text,
)
x = self.norm_out(x, t)
output = self.proj_out(x)
return output
class TextEncoder(nn.Module):
def __init__(
self,
text_num_embeds: int,
text_dim: int = 512,
depth: int = 4,
heads: int = 8,
dim_head: int = 64,
ff_mult: int = 4,
dropout: float = 0.1,
):
"""
A simple text encoder: an embedding layer + multiple DiTBlocks or any other
transformer blocks for text-only self-attention.
"""
super().__init__()
# Embeddings
self.text_embed = TextEmbedding(text_dim, text_num_embeds)
self.rotary_embed = RotaryEmbedding(dim_head)
# Example stack of DiTBlocks or any custom blocks
self.transformer_blocks = nn.ModuleList(
[
DiTBlock(
dim=text_dim,
heads=heads,
dim_head=dim_head,
ff_mult=ff_mult,
dropout=dropout,
)
for _ in range(depth)
]
)
def forward(
self,
text: int["b nt"], # noqa: F821
time: float["b"] | float[""], # time step # noqa: F821 F722
mask: bool["b nt"] | None = None, # noqa: F821 F722
drop_text: bool = False,
):
"""
Encode text into hidden states of shape [b, nt, d].
"""
batch, seq_len, device = text.shape[0], text.shape[1], text.device
if drop_text:
text = torch.zeros_like(text)
# Basic embedding
hidden_states = self.text_embed(text, seq_len) # [b, nt, d]
# lens and mask
rope = self.rotary_embed.forward_from_seq_len(seq_len)
# Pass through self-attention blocks
for block in self.transformer_blocks:
# Here, you likely want standard self-attn, so no cross-attn
hidden_states = block(
x=hidden_states,
t=time, # no time embedding for the text encoder by default
mask=mask, # or pass a text mask if needed
rope=rope, # pass a rope if you want rotary embeddings for text
)
return hidden_states
if __name__ == "__main__":
from f5_tts.model.utils import get_tokenizer
bsz = 16
tokenizer = "pinyin" # 'pinyin', 'char', or 'custom'
tokenizer_path = None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
dataset_name = "Emilia_ZH_EN"
if tokenizer == "custom":
tokenizer_path = tokenizer_path
else:
tokenizer_path = dataset_name
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
text = ["hello world"] * bsz
text_lens = torch.ones((bsz,), dtype=torch.long) * len("hello world")
text_lens[-1] = 5
device = "cuda"
batch = bsz
time_embed = TimestepEmbedding(512).to(device)
# handle text as string
if isinstance(text, list):
if exists(vocab_char_map):
text = list_str_to_idx(text, vocab_char_map).to(device)
else:
text = list_str_to_tensor(text).to(device)
assert text.shape[0] == batch
time = torch.rand((batch,), device=device)
text_mask = lens_to_mask(text_lens).to(device)
# # test text encoder
# text_encoder = TextEncoder(
# text_num_embeds=vocab_size,
# text_dim=512,
# depth=4,
# heads=8,
# dim_head=64,
# ff_mult=4,
# dropout=0.1
# ).to('cuda')
# hidden_states = text_encoder(text, time_embed(time), mask)
# print(hidden_states.shape) # [bsz, seq_len, text_dim]
# test MMDiT
mel_dim = 80
model = MMDiT(
dim=512,
text_depth=4,
depth=8,
heads=8,
dim_head=64,
dropout=0.1,
ff_mult=4,
text_num_embeds=vocab_size,
mel_dim=mel_dim,
).to(device)
x = torch.rand((batch, 100, mel_dim), device=device)
cond = torch.rand((batch, 100, mel_dim), device=device)
lens = torch.ones((batch,), dtype=torch.long) * 100
mask = lens_to_mask(lens).to(device)
output = model(
x,
cond,
text,
time,
drop_audio_cond=False,
drop_text=False,
mask=mask,
text_mask=text_mask,
)
print(output.shape) # [bsz, seq_len, mel_dim]
|