File size: 22,080 Bytes
39d2f14
597cecf
39d2f14
 
597cecf
 
39d2f14
 
 
597cecf
 
 
 
 
 
39d2f14
597cecf
39d2f14
597cecf
 
 
39d2f14
 
 
 
 
 
597cecf
39d2f14
 
 
 
 
 
 
 
 
 
 
597cecf
39d2f14
 
 
 
 
 
 
 
 
597cecf
39d2f14
 
 
 
597cecf
39d2f14
 
 
 
 
 
 
 
597cecf
39d2f14
 
 
 
 
 
597cecf
39d2f14
 
 
 
 
 
597cecf
 
 
 
 
39d2f14
 
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
597cecf
39d2f14
 
597cecf
 
 
 
 
 
39d2f14
 
 
 
 
 
 
 
597cecf
39d2f14
597cecf
 
 
39d2f14
 
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
597cecf
39d2f14
 
 
 
597cecf
39d2f14
 
 
 
 
 
 
 
597cecf
39d2f14
597cecf
39d2f14
 
 
 
 
 
 
597cecf
39d2f14
597cecf
39d2f14
597cecf
 
 
 
 
 
 
39d2f14
 
597cecf
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
39d2f14
 
 
597cecf
39d2f14
 
 
 
 
 
597cecf
39d2f14
 
597cecf
 
 
39d2f14
 
597cecf
39d2f14
 
 
597cecf
 
 
39d2f14
 
 
 
597cecf
 
 
39d2f14
597cecf
39d2f14
597cecf
39d2f14
 
 
 
 
597cecf
39d2f14
 
597cecf
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
39d2f14
 
 
597cecf
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
39d2f14
 
 
 
 
597cecf
39d2f14
 
597cecf
 
 
 
39d2f14
 
 
597cecf
39d2f14
 
597cecf
39d2f14
 
 
 
597cecf
39d2f14
 
 
597cecf
39d2f14
597cecf
39d2f14
 
 
597cecf
39d2f14
 
 
 
 
597cecf
 
 
39d2f14
 
597cecf
39d2f14
597cecf
 
 
 
39d2f14
 
 
597cecf
 
39d2f14
597cecf
39d2f14
 
 
597cecf
 
 
 
 
39d2f14
597cecf
 
 
 
 
 
 
 
 
 
 
39d2f14
 
 
597cecf
39d2f14
597cecf
39d2f14
597cecf
 
 
 
39d2f14
 
597cecf
 
39d2f14
597cecf
39d2f14
 
 
 
 
 
 
 
 
597cecf
39d2f14
 
 
597cecf
39d2f14
 
 
 
 
 
 
 
 
597cecf
39d2f14
 
 
 
 
597cecf
39d2f14
 
 
597cecf
39d2f14
 
 
597cecf
39d2f14
 
597cecf
39d2f14
 
 
 
597cecf
39d2f14
 
 
597cecf
39d2f14
597cecf
39d2f14
 
 
597cecf
39d2f14
 
 
 
 
597cecf
 
 
39d2f14
 
597cecf
39d2f14
 
 
 
 
597cecf
39d2f14
 
597cecf
 
 
 
 
 
 
 
 
 
39d2f14
597cecf
39d2f14
 
597cecf
 
39d2f14
597cecf
39d2f14
 
 
 
597cecf
39d2f14
 
597cecf
39d2f14
 
 
 
597cecf
39d2f14
 
597cecf
39d2f14
 
597cecf
39d2f14
 
 
 
 
 
 
597cecf
39d2f14
 
 
597cecf
39d2f14
 
597cecf
39d2f14
 
597cecf
39d2f14
 
 
597cecf
39d2f14
 
597cecf
 
 
39d2f14
 
597cecf
39d2f14
597cecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39d2f14
 
597cecf
39d2f14
 
 
597cecf
 
 
 
 
39d2f14
 
 
 
597cecf
39d2f14
597cecf
 
 
 
 
 
39d2f14
 
597cecf
 
 
 
 
 
 
39d2f14
597cecf
39d2f14
 
597cecf
 
 
 
 
 
 
39d2f14
 
597cecf
39d2f14
 
 
 
597cecf
 
 
 
 
 
39d2f14
 
 
597cecf
39d2f14
 
 
 
 
597cecf
39d2f14
597cecf
 
 
39d2f14
 
597cecf
39d2f14
597cecf
39d2f14
 
597cecf
39d2f14
 
 
 
 
 
 
597cecf
 
 
 
39d2f14
 
 
 
597cecf
39d2f14
 
597cecf
39d2f14
 
 
597cecf
39d2f14
597cecf
39d2f14
 
 
 
 
 
 
597cecf
39d2f14
597cecf
39d2f14
 
597cecf
39d2f14
597cecf
39d2f14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
import os

import torch
import torch.nn.functional as F
import torchaudio
from safetensors.torch import load_file
from torch.nn.utils.rnn import pad_sequence
from torchdiffeq import odeint

from duration_predictor import SpeechLengthPredictor
from f5_tts.infer.utils_infer import (chunk_text, convert_char_to_pinyin,
                                      hop_length, load_vocoder,
                                      preprocess_ref_audio_text, speed,
                                      target_rms, target_sample_rate,
                                      transcribe)
# Import F5-TTS modules
from f5_tts.model import CFM, DiT, UNetT
from f5_tts.model.modules import MelSpec
from f5_tts.model.utils import (default, exists, get_tokenizer, lens_to_mask,
                                list_str_to_idx, list_str_to_tensor,
                                mask_from_frac_lengths)
# Import custom modules
from unimodel import UniModel


class DMOInference:
    """F5-TTS Inference wrapper class for easy text-to-speech generation."""

    def __init__(
        self,
        student_checkpoint_path="",
        duration_predictor_path="",
        device="cuda",
        model_type="F5TTS_Base",  # "F5TTS_Base" or "E2TTS_Base"
        tokenizer="pinyin",
        dataset_name="Emilia_ZH_EN",
    ):
        """
        Initialize F5-TTS inference model.

        Args:
            student_checkpoint_path: Path to student model checkpoint
            duration_predictor_path: Path to duration predictor checkpoint
            device: Device to run inference on
            model_type: Model architecture type
            tokenizer: Tokenizer type ("pinyin", "char", or "custom")
            dataset_name: Dataset name for tokenizer
            cuda_device_id: CUDA device ID to use
        """

        self.device = device
        self.model_type = model_type
        self.tokenizer = tokenizer
        self.dataset_name = dataset_name

        # Model parameters
        self.target_sample_rate = 24000
        self.n_mel_channels = 100
        self.hop_length = 256
        self.real_guidance_scale = 2
        self.fake_guidance_scale = 0
        self.gen_cls_loss = False
        self.num_student_step = 4

        # Initialize components
        self._setup_tokenizer()
        self._setup_models(student_checkpoint_path)
        self._setup_mel_spec()
        self._setup_vocoder()
        self._setup_duration_predictor(duration_predictor_path)

    def _setup_tokenizer(self):
        """Setup tokenizer and vocabulary."""
        if self.tokenizer == "custom":
            tokenizer_path = self.tokenizer_path
        else:
            tokenizer_path = self.dataset_name

        self.vocab_char_map, self.vocab_size = get_tokenizer(
            tokenizer_path, self.tokenizer
        )

    def _setup_models(self, student_checkpoint_path):
        """Initialize teacher and student models."""
        # Model configuration
        if self.model_type == "F5TTS_Base":
            model_cls = DiT
            model_cfg = dict(
                dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4
            )
        elif self.model_type == "E2TTS_Base":
            model_cls = UNetT
            model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
        else:
            raise ValueError(f"Unknown model type: {self.model_type}")

        # Initialize UniModel (student)
        self.model = UniModel(
            model_cls(
                **model_cfg,
                text_num_embeds=self.vocab_size,
                mel_dim=self.n_mel_channels,
                second_time=self.num_student_step > 1,
            ),
            checkpoint_path="",
            vocab_char_map=self.vocab_char_map,
            frac_lengths_mask=(0.5, 0.9),
            real_guidance_scale=self.real_guidance_scale,
            fake_guidance_scale=self.fake_guidance_scale,
            gen_cls_loss=self.gen_cls_loss,
            sway_coeff=0,
        )

        # Load student checkpoint
        checkpoint = torch.load(student_checkpoint_path, map_location="cpu")
        self.model.load_state_dict(checkpoint["model_state_dict"], strict=False)

        # Setup generator and teacher
        self.generator = self.model.feedforward_model.to(self.device)
        self.teacher = self.model.guidance_model.real_unet.to(self.device)

        self.scale = checkpoint["scale"]

    def _setup_mel_spec(self):
        """Initialize mel spectrogram module."""
        mel_spec_kwargs = dict(
            target_sample_rate=self.target_sample_rate,
            n_mel_channels=self.n_mel_channels,
            hop_length=self.hop_length,
        )
        self.mel_spec = MelSpec(**mel_spec_kwargs)

    def _setup_vocoder(self):
        """Initialize vocoder."""
        self.vocos = load_vocoder(is_local=False, local_path="")
        self.vocos = self.vocos.to(self.device)

    def _setup_duration_predictor(self, checkpoint_path):
        """Initialize duration predictor."""
        self.wav2mel = MelSpec(
            target_sample_rate=24000,
            n_mel_channels=100,
            hop_length=256,
            win_length=1024,
            n_fft=1024,
            mel_spec_type="vocos",
        ).to(self.device)

        self.SLP = SpeechLengthPredictor(
            vocab_size=2545,
            n_mel=100,
            hidden_dim=512,
            n_text_layer=4,
            n_cross_layer=4,
            n_head=8,
            output_dim=301,
        ).to(self.device)

        self.SLP.eval()
        self.SLP.load_state_dict(
            torch.load(checkpoint_path, map_location="cpu")["model_state_dict"]
        )

    def predict_duration(
        self, pmt_wav_path, tar_text, pmt_text, dp_softmax_range=0.7, temperature=0
    ):
        """
        Predict duration for target text based on prompt audio.

        Args:
            pmt_wav_path: Path to prompt audio
            tar_text: Target text to generate
            pmt_text: Prompt text
            dp_softmax_range: softmax annliation range from rate-based duration
            temperature: temperature for softmax sampling (if 0, will use argmax)
        Returns:
            Estimated duration in frames
        """
        pmt_wav, sr = torchaudio.load(pmt_wav_path)
        if sr != self.target_sample_rate:
            resampler = torchaudio.transforms.Resample(sr, self.target_sample_rate)
            pmt_wav = resampler(pmt_wav)
        if pmt_wav.size(0) > 1:
            pmt_wav = pmt_wav[0].unsqueeze(0)
        pmt_wav = pmt_wav.to(self.device)

        pmt_mel = self.wav2mel(pmt_wav).permute(0, 2, 1)
        tar_tokens = self._convert_to_pinyin(list(tar_text))
        pmt_tokens = self._convert_to_pinyin(list(pmt_text))

        # Calculate duration
        ref_text_len = len(pmt_tokens)
        gen_text_len = len(tar_tokens)
        ref_audio_len = pmt_mel.size(1)
        duration = int(ref_audio_len / ref_text_len * gen_text_len / speed)
        duration = duration // 10

        min_duration = max(int(duration * dp_softmax_range), 0)
        max_duration = min(int(duration * (1 + dp_softmax_range)), 301)

        all_tokens = pmt_tokens + [" "] + tar_tokens

        text_ids = list_str_to_idx([all_tokens], self.vocab_char_map).to(self.device)
        text_ids = text_ids.masked_fill(text_ids == -1, self.vocab_size)

        with torch.no_grad():
            predictions = self.SLP(text_ids=text_ids, mel=pmt_mel)
        predictions = predictions[:, -1, :]
        predictions[:, :min_duration] = float("-inf")
        predictions[:, max_duration:] = float("-inf")

        if temperature == 0:
            est_label = predictions.argmax(-1)[..., -1].item() * 10
        else:
            probs = torch.softmax(predictions / temperature, dim=-1)
            sampled_idx = torch.multinomial(
                probs.squeeze(0), num_samples=1
            )  # Remove the -1 index
            est_label = sampled_idx.item() * 10

        return est_label

    def _convert_to_pinyin(self, char_list):
        """Convert character list to pinyin."""
        result = []
        for x in convert_char_to_pinyin(char_list):
            result = result + x
        while result[0] == " " and len(result) > 1:
            result = result[1:]
        return result

    def generate(
        self,
        gen_text,
        audio_path,
        prompt_text=None,
        teacher_steps=16,
        teacher_stopping_time=0.07,
        student_start_step=1,
        duration=None,
        dp_softmax_range=0.7,
        temperature=0,
        eta=1.0,
        cfg_strength=2.0,
        sway_coefficient=-1.0,
        verbose=False,
    ):
        """
        Generate speech from text using teacher-student distillation.

        Args:
            gen_text: Text to generate
            audio_path: Path to prompt audio
            prompt_text: Prompt text (if None, will use ASR)
            teacher_steps: Number of teacher guidance steps
            teacher_stopping_time: When to stop teacher sampling
            student_start_step: When to start student sampling
            duration: Total duration (if None, will predict)
            dp_softmax_range: Duration predictor softmax range allowed around rate based duration
            temperature: Temperature for duration predictor sampling (0 means use argmax)
            eta: Stochasticity control (0=DDIM, 1=DDPM)
            cfg_strength: Classifier-free guidance strength
            sway_coefficient: Sway sampling coefficient
            verbose: Output sampling steps

        Returns:
            Generated audio waveform
        """
        if prompt_text is None:
            prompt_text = transcribe(audio_path)

        # Predict duration if not provided
        if duration is None:
            duration = self.predict_duration(
                audio_path, gen_text, prompt_text, dp_softmax_range, temperature
            )

        # Preprocess audio and text
        ref_audio, ref_text = preprocess_ref_audio_text(audio_path, prompt_text)
        audio, sr = torchaudio.load(ref_audio)

        if audio.shape[0] > 1:
            audio = torch.mean(audio, dim=0, keepdim=True)

        # Normalize audio
        rms = torch.sqrt(torch.mean(torch.square(audio)))
        if rms < target_rms:
            audio = audio * target_rms / rms

        if sr != self.target_sample_rate:
            resampler = torchaudio.transforms.Resample(sr, self.target_sample_rate)
            audio = resampler(audio)

        audio = audio.to(self.device)

        # Prepare text
        text_list = [ref_text + gen_text]
        final_text_list = convert_char_to_pinyin(text_list)

        # Calculate durations
        ref_audio_len = audio.shape[-1] // self.hop_length
        if duration is None:
            ref_text_len = len(ref_text.encode("utf-8"))
            gen_text_len = len(gen_text.encode("utf-8"))
            duration = ref_audio_len + int(
                ref_audio_len / ref_text_len * gen_text_len / speed
            )
        else:
            duration = ref_audio_len + duration

        if verbose:
            print("audio:", audio.shape)
            print("text:", final_text_list)
            print("duration:", duration)
            print("eta (stochasticity):", eta)  # Print eta value for debugging

        # Run inference
        with torch.inference_mode():
            cond, text, step_cond, cond_mask, max_duration, duration_tensor = (
                self._prepare_inputs(audio, final_text_list, duration)
            )

            # Teacher-student sampling
            if teacher_steps > 0 and student_start_step > 0:
                if verbose:
                    print(
                        "Start teacher sampling with hybrid DDIM/DDPM (eta={})....".format(
                            eta
                        )
                    )
                x1 = self._teacher_sampling(
                    step_cond,
                    text,
                    cond_mask,
                    max_duration,
                    duration_tensor,  # Use duration_tensor
                    teacher_steps,
                    teacher_stopping_time,
                    eta,
                    cfg_strength,
                    verbose,
                    sway_coefficient,
                )
            else:
                x1 = step_cond

            if verbose:
                print("Start student sampling...")
            # Student sampling
            x1 = self._student_sampling(
                x1, cond, text, student_start_step, verbose, sway_coefficient
            )

            # Decode to audio
            mel = x1.permute(0, 2, 1) * self.scale
            generated_wave = self.vocos.decode(mel[..., cond_mask.sum() :])

        return generated_wave.cpu().numpy().squeeze()

    def generate_teacher_only(
        self,
        gen_text,
        audio_path,
        prompt_text=None,
        teacher_steps=32,
        duration=None,
        eta=1.0,
        cfg_strength=2.0,
        sway_coefficient=-1.0,
    ):
        """
        Generate speech using teacher model only (no student distillation).

        Args:
            gen_text: Text to generate
            audio_path: Path to prompt audio
            prompt_text: Prompt text (if None, will use ASR)
            teacher_steps: Number of sampling steps
            duration: Total duration (if None, will predict)
            eta: Stochasticity control (0=DDIM, 1=DDPM)
            cfg_strength: Classifier-free guidance strength
            sway_coefficient: Sway sampling coefficient

        Returns:
            Generated audio waveform
        """
        if prompt_text is None:
            prompt_text = transcribe(audio_path)

        # Predict duration if not provided
        if duration is None:
            duration = self.predict_duration(audio_path, gen_text, prompt_text)

        # Preprocess audio and text
        ref_audio, ref_text = preprocess_ref_audio_text(audio_path, prompt_text)
        audio, sr = torchaudio.load(ref_audio)

        if audio.shape[0] > 1:
            audio = torch.mean(audio, dim=0, keepdim=True)

        # Normalize audio
        rms = torch.sqrt(torch.mean(torch.square(audio)))
        if rms < target_rms:
            audio = audio * target_rms / rms

        if sr != self.target_sample_rate:
            resampler = torchaudio.transforms.Resample(sr, self.target_sample_rate)
            audio = resampler(audio)

        audio = audio.to(self.device)

        # Prepare text
        text_list = [ref_text + gen_text]
        final_text_list = convert_char_to_pinyin(text_list)

        # Calculate durations
        ref_audio_len = audio.shape[-1] // self.hop_length
        if duration is None:
            ref_text_len = len(ref_text.encode("utf-8"))
            gen_text_len = len(gen_text.encode("utf-8"))
            duration = ref_audio_len + int(
                ref_audio_len / ref_text_len * gen_text_len / speed
            )
        else:
            duration = ref_audio_len + duration

        # Run inference
        with torch.inference_mode():
            cond, text, step_cond, cond_mask, max_duration = self._prepare_inputs(
                audio, final_text_list, duration
            )

            # Teacher-only sampling
            x1 = self._teacher_sampling(
                step_cond,
                text,
                cond_mask,
                max_duration,
                duration,
                teacher_steps,
                1.0,
                eta,
                cfg_strength,
                sway_coefficient,  # stopping_time=1.0 for full sampling
            )

            # Decode to audio
            mel = x1.permute(0, 2, 1) * self.scale
            generated_wave = self.vocos.decode(mel[..., cond_mask.sum() :])

        return generated_wave

    def _prepare_inputs(self, audio, text_list, duration):
        """Prepare inputs for generation."""
        lens = None
        max_duration_limit = 4096

        cond = audio
        text = text_list

        if cond.ndim == 2:
            cond = self.mel_spec(cond)
            cond = cond.permute(0, 2, 1)
            assert cond.shape[-1] == 100

        cond = cond / self.scale
        batch, cond_seq_len, device = *cond.shape[:2], cond.device

        if not exists(lens):
            lens = torch.full((batch,), cond_seq_len, device=device, dtype=torch.long)

        # Process text
        if isinstance(text, list):
            if exists(self.vocab_char_map):
                text = list_str_to_idx(text, self.vocab_char_map).to(device)
            else:
                text = list_str_to_tensor(text).to(device)
            assert text.shape[0] == batch

        if exists(text):
            text_lens = (text != -1).sum(dim=-1)
            lens = torch.maximum(text_lens, lens)

        # Process duration
        cond_mask = lens_to_mask(lens)

        if isinstance(duration, int):
            duration = torch.full((batch,), duration, device=device, dtype=torch.long)

        duration = torch.maximum(lens + 1, duration)
        duration = duration.clamp(max=max_duration_limit)
        max_duration = duration.amax()

        # Pad conditioning
        cond = F.pad(cond, (0, 0, 0, max_duration - cond_seq_len), value=0.0)
        cond_mask = F.pad(
            cond_mask, (0, max_duration - cond_mask.shape[-1]), value=False
        )
        cond_mask = cond_mask.unsqueeze(-1)
        step_cond = torch.where(cond_mask, cond, torch.zeros_like(cond))

        return cond, text, step_cond, cond_mask, max_duration, duration

    def _teacher_sampling(
        self,
        step_cond,
        text,
        cond_mask,
        max_duration,
        duration,
        teacher_steps,
        teacher_stopping_time,
        eta,
        cfg_strength,
        verbose,
        sway_sampling_coef=-1,
    ):
        """Perform teacher model sampling."""
        device = step_cond.device

        # Pre-generate noise sequence for stochastic sampling
        noise_seq = None
        if eta > 0:
            noise_seq = [
                torch.randn(1, max_duration, 100, device=device)
                for _ in range(teacher_steps)
            ]

        def fn(t, x):
            with torch.inference_mode():
                with torch.autocast(device_type="cuda", dtype=torch.float16):
                    if verbose:
                        print(f"current t: {t}")
                    step_frac = 1.0 - t.item()
                    step_idx = (
                        min(int(step_frac * len(noise_seq)), len(noise_seq) - 1)
                        if noise_seq
                        else 0
                    )

                    # Predict flow
                    pred = self.teacher(
                        x=x,
                        cond=step_cond,
                        text=text,
                        time=t,
                        mask=None,
                        drop_audio_cond=False,
                        drop_text=False,
                    )

                    if cfg_strength > 1e-5:
                        null_pred = self.teacher(
                            x=x,
                            cond=step_cond,
                            text=text,
                            time=t,
                            mask=None,
                            drop_audio_cond=True,
                            drop_text=True,
                        )
                        pred = pred + (pred - null_pred) * cfg_strength

                    # Add stochasticity if eta > 0
                    if eta > 0 and noise_seq is not None:
                        alpha_t = 1.0 - t.item()
                        sigma_t = t.item()
                        noise_scale = torch.sqrt(
                            torch.tensor(
                                (sigma_t**2) / (alpha_t**2 + sigma_t**2) * eta,
                                device=device,
                            )
                        )
                        return pred + noise_scale * noise_seq[step_idx]
                    else:
                        return pred

        # Initialize noise
        y0 = []
        for dur in duration:
            y0.append(torch.randn(dur, 100, device=device, dtype=step_cond.dtype))
        y0 = pad_sequence(y0, padding_value=0, batch_first=True)

        # Setup time steps
        t = torch.linspace(
            0, 1, teacher_steps + 1, device=device, dtype=step_cond.dtype
        )
        if sway_sampling_coef is not None:
            t = t + sway_sampling_coef * (torch.cos(torch.pi / 2 * t) - 1 + t)
        t = t[: (t > teacher_stopping_time).float().argmax() + 2]
        t = t[:-1]

        # Solve ODE
        trajectory = odeint(fn, y0, t, method="euler")

        if teacher_stopping_time < 1.0:
            # If early stopping, compute final step
            pred = fn(t[-1], trajectory[-1])
            test_out = trajectory[-1] + (1 - t[-1]) * pred
            return test_out
        else:
            return trajectory[-1]

    def _student_sampling(
        self, x1, cond, text, student_start_step, verbose, sway_coeff=-1
    ):
        """Perform student model sampling."""
        steps = torch.Tensor([0, 0.25, 0.5, 0.75])
        steps = steps + sway_coeff * (torch.cos(torch.pi / 2 * steps) - 1 + steps)
        steps = steps[student_start_step:]

        for step in steps:
            time = torch.Tensor([step]).to(x1.device)

            x0 = torch.randn_like(x1)
            t = time.unsqueeze(-1).unsqueeze(-1)
            phi = (1 - t) * x0 + t * x1

            if verbose:
                print(f"current step: {step}")
            with torch.no_grad():
                pred = self.generator(
                    x=phi,
                    cond=cond,
                    text=text,
                    time=time,
                    drop_audio_cond=False,
                    drop_text=False,
                )

                # Predicted mel spectrogram
                output = phi + (1 - t) * pred

            x1 = output

        return x1