Spaces:
Running
on
Zero
Running
on
Zero
import copy | |
from pathlib import Path | |
import torch | |
from torch import nn | |
from torchaudio.models import Conformer | |
from f5_tts.model.utils import (default, exists, lens_to_mask, list_str_to_idx, | |
list_str_to_tensor, mask_from_frac_lengths) | |
class ResBlock(nn.Module): | |
def __init__(self, hidden_dim, n_conv=3, dropout_p=0.2): | |
super().__init__() | |
self._n_groups = 8 | |
self.blocks = nn.ModuleList( | |
[ | |
self._get_conv(hidden_dim, dilation=3**i, dropout_p=dropout_p) | |
for i in range(n_conv) | |
] | |
) | |
def forward(self, x): | |
for block in self.blocks: | |
res = x | |
x = block(x) | |
x += res | |
return x | |
def _get_conv(self, hidden_dim, dilation, dropout_p=0.2): | |
layers = [ | |
nn.Conv1d( | |
hidden_dim, | |
hidden_dim, | |
kernel_size=3, | |
padding=dilation, | |
dilation=dilation, | |
), | |
nn.ReLU(), | |
nn.GroupNorm(num_groups=self._n_groups, num_channels=hidden_dim), | |
nn.Dropout(p=dropout_p), | |
nn.Conv1d(hidden_dim, hidden_dim, kernel_size=3, padding=1, dilation=1), | |
nn.ReLU(), | |
nn.Dropout(p=dropout_p), | |
] | |
return nn.Sequential(*layers) | |
class ConformerCTC(nn.Module): | |
def __init__(self, vocab_size, mel_dim=100, num_heads=8, d_hid=512, nlayers=6): | |
super().__init__() | |
self.mel_proj = nn.Conv1d(mel_dim, d_hid, kernel_size=3, padding=1) | |
self.d_hid = d_hid | |
self.resblock1 = nn.Sequential( | |
ResBlock(d_hid), nn.GroupNorm(num_groups=1, num_channels=d_hid) | |
) | |
self.resblock2 = nn.Sequential( | |
ResBlock(d_hid), nn.GroupNorm(num_groups=1, num_channels=d_hid) | |
) | |
self.conf_pre = torch.nn.ModuleList( | |
[ | |
Conformer( | |
input_dim=d_hid, | |
num_heads=num_heads, | |
ffn_dim=d_hid * 2, | |
num_layers=1, | |
depthwise_conv_kernel_size=15, | |
use_group_norm=True, | |
) | |
for _ in range(nlayers // 2) | |
] | |
) | |
self.conf_after = torch.nn.ModuleList( | |
[ | |
Conformer( | |
input_dim=d_hid, | |
num_heads=num_heads, | |
ffn_dim=d_hid * 2, | |
num_layers=1, | |
depthwise_conv_kernel_size=7, | |
use_group_norm=True, | |
) | |
for _ in range(nlayers // 2) | |
] | |
) | |
self.out = nn.Linear(d_hid, 1 + vocab_size) # 1 for blank | |
self.ctc_loss = nn.CTCLoss(blank=vocab_size, zero_infinity=True).cuda() | |
def forward(self, latent, text=None, text_lens=None): | |
layers = [] | |
x = self.mel_proj(latent.transpose(-1, -2)).transpose(-1, -2) | |
x = x.transpose(1, 2) | |
layers.append(nn.functional.avg_pool1d(x, 4)) | |
# x = x.transpose(1, 2) | |
x = self.resblock1(x) | |
x = nn.functional.avg_pool1d(x, 2) | |
layers.append(nn.functional.avg_pool1d(x, 2)) | |
x = self.resblock2(x) | |
x = nn.functional.avg_pool1d(x, 2) | |
layers.append(x) | |
x = x.transpose(1, 2) | |
batch_size, time_steps, _ = x.shape | |
# Create a dummy lengths tensor (all sequences are assumed to be full length). | |
input_lengths = torch.full( | |
(batch_size,), time_steps, device=x.device, dtype=torch.int64 | |
) | |
for layer in self.conf_pre: | |
x, _ = layer(x, input_lengths) | |
layers.append(x.transpose(1, 2)) | |
for layer in self.conf_after: | |
x, _ = layer(x, input_lengths) | |
layers.append(x.transpose(1, 2)) | |
x = self.out(x) | |
if text_lens is not None and text is not None: | |
loss = self.ctc_loss( | |
x.log_softmax(dim=2).transpose(0, 1), text, input_lengths, text_lens | |
) | |
return x, layers, loss | |
else: | |
return x, layers | |
if __name__ == "__main__": | |
from f5_tts.model.utils import get_tokenizer | |
bsz = 16 | |
tokenizer = "pinyin" # 'pinyin', 'char', or 'custom' | |
tokenizer_path = None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt) | |
dataset_name = "Emilia_ZH_EN" | |
if tokenizer == "custom": | |
tokenizer_path = tokenizer_path | |
else: | |
tokenizer_path = dataset_name | |
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer) | |
model = ConformerCTC( | |
vocab_size, mel_dim=80, num_heads=8, d_hid=512, nlayers=6 | |
).cuda() | |
text = ["hello world"] * bsz | |
lens = torch.randint(1, 1000, (bsz,)).cuda() | |
inp = torch.randn(bsz, lens.max(), 80).cuda() | |
batch, seq_len, dtype, device = *inp.shape[:2], inp.dtype, inp.device | |
# handle text as string | |
text_lens = torch.tensor([len(t) for t in text], device=device) | |
if isinstance(text, list): | |
if exists(vocab_char_map): | |
text = list_str_to_idx(text, vocab_char_map).to(device) | |
else: | |
text = list_str_to_tensor(text).to(device) | |
assert text.shape[0] == batch | |
# lens and mask | |
if not exists(lens): | |
lens = torch.full((batch,), seq_len, device=device) | |
out, layers, loss = model(inp, text_lens) | |
print(out.shape) | |
print(out) | |
print(len(layers)) | |
print(torch.stack(layers, axis=1).shape) | |
print(loss) | |
probs = out.softmax(dim=2) # Convert logits to probabilities | |
# Greedy decoding | |
best_path = torch.argmax(probs, dim=2) | |
decoded_sequences = [] | |
blank_idx = vocab_size | |
char_vocab_map = list(vocab_char_map.keys()) | |
for batch in best_path: | |
decoded_sequence = [] | |
previous_token = None | |
for token in batch: | |
if token != previous_token: # Collapse repeated tokens | |
if token != blank_idx: # Ignore blank tokens | |
decoded_sequence.append(token.item()) | |
previous_token = token | |
decoded_sequences.append(decoded_sequence) | |
# Convert token indices to characters | |
decoded_texts = [ | |
"".join([char_vocab_map[token] for token in sequence]) | |
for sequence in decoded_sequences | |
] | |
gt_texts = [] | |
for i in range(text_lens.size(0)): | |
gt_texts.append( | |
"".join([char_vocab_map[token] for token in text[i, : text_lens[i]]]) | |
) | |
print(decoded_texts) | |
print(gt_texts) | |