Spaces:
Running
on
Zero
Running
on
Zero
from __future__ import annotations | |
import gc | |
import math | |
import os | |
import torch | |
import torch.nn.functional as F | |
import torchaudio | |
import wandb | |
from accelerate import Accelerator | |
from accelerate.utils import DistributedDataParallelKwargs | |
from ema_pytorch import EMA | |
from torch.optim import AdamW | |
from torch.optim.lr_scheduler import LinearLR, SequentialLR | |
from torch.utils.data import Dataset # <-- Added Subset import | |
from torch.utils.data import DataLoader, SequentialSampler, Subset | |
from tqdm import tqdm | |
from f5_tts.model import CFM | |
from f5_tts.model.dataset import DynamicBatchSampler, collate_fn | |
from f5_tts.model.utils import (default, exists, lens_to_mask, list_str_to_idx, | |
list_str_to_tensor, mask_from_frac_lengths) | |
# trainer | |
SAMPLE_RATE = 24_000 | |
class Trainer: | |
def __init__( | |
self, | |
model, | |
vocab_size, | |
vocab_char_map, | |
process_token_to_id=True, | |
loss_fn="L1", | |
lambda_L1=1, | |
gumbel_tau=0.5, | |
n_class=301, | |
n_frame_per_class=10, | |
epochs=15, | |
learning_rate=1e-4, | |
num_warmup_updates=20000, | |
save_per_updates=1000, | |
checkpoint_path=None, | |
batch_size=32, | |
batch_size_type: str = "sample", | |
max_samples=32, | |
grad_accumulation_steps=1, | |
max_grad_norm=1.0, | |
logger: str | None = "wandb", # "wandb" | "tensorboard" | None | |
wandb_project="test_e2-tts", | |
wandb_run_name="test_run", | |
wandb_resume_id: str = None, | |
last_per_steps=None, | |
accelerate_kwargs: dict = dict(), | |
ema_kwargs: dict = dict(), | |
bnb_optimizer: bool = False, | |
): | |
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=False) | |
if logger == "wandb" and not wandb.api.api_key: | |
logger = None | |
print(f"Using logger: {logger}") | |
self.accelerator = Accelerator( | |
log_with=logger if logger == "wandb" else None, | |
kwargs_handlers=[ddp_kwargs], | |
gradient_accumulation_steps=grad_accumulation_steps, | |
**accelerate_kwargs, | |
) | |
self.logger = logger | |
if self.logger == "wandb": | |
if exists(wandb_resume_id): | |
init_kwargs = { | |
"wandb": { | |
"resume": "allow", | |
"name": wandb_run_name, | |
"id": wandb_resume_id, | |
} | |
} | |
else: | |
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name}} | |
self.accelerator.init_trackers( | |
project_name=wandb_project, | |
init_kwargs=init_kwargs, | |
config={ | |
"epochs": epochs, | |
"learning_rate": learning_rate, | |
"num_warmup_updates": num_warmup_updates, | |
"batch_size": batch_size, | |
"batch_size_type": batch_size_type, | |
"max_samples": max_samples, | |
"grad_accumulation_steps": grad_accumulation_steps, | |
"max_grad_norm": max_grad_norm, | |
"gpus": self.accelerator.num_processes, | |
}, | |
) | |
elif self.logger == "tensorboard": | |
from torch.utils.tensorboard import SummaryWriter | |
self.writer = SummaryWriter(log_dir=f"runs/{wandb_run_name}") | |
self.model = model | |
self.vocab_size = vocab_size | |
self.vocab_char_map = vocab_char_map | |
self.process_token_to_id = process_token_to_id | |
assert loss_fn in ["L1", "CE", "L1_and_CE"] | |
self.loss_fn = loss_fn | |
self.lambda_L1 = lambda_L1 | |
self.n_class = n_class | |
self.n_frame_per_class = n_frame_per_class | |
self.gumbel_tau = gumbel_tau | |
self.epochs = epochs | |
self.num_warmup_updates = num_warmup_updates | |
self.save_per_updates = save_per_updates | |
self.last_per_steps = default( | |
last_per_steps, save_per_updates * grad_accumulation_steps | |
) | |
self.checkpoint_path = default(checkpoint_path, "ckpts/test_e2-tts") | |
self.batch_size = batch_size | |
self.batch_size_type = batch_size_type | |
self.max_samples = max_samples | |
self.grad_accumulation_steps = grad_accumulation_steps | |
self.max_grad_norm = max_grad_norm | |
if bnb_optimizer: | |
import bitsandbytes as bnb | |
self.optimizer = bnb.optim.AdamW8bit(model.parameters(), lr=learning_rate) | |
else: | |
self.optimizer = AdamW(model.parameters(), lr=learning_rate) | |
self.model, self.optimizer = self.accelerator.prepare( | |
self.model, self.optimizer | |
) | |
def is_main(self): | |
return self.accelerator.is_main_process | |
def save_checkpoint(self, step, last=False): | |
self.accelerator.wait_for_everyone() | |
if self.is_main: | |
checkpoint = dict( | |
model_state_dict=self.accelerator.unwrap_model(self.model).state_dict(), | |
optimizer_state_dict=self.accelerator.unwrap_model( | |
self.optimizer | |
).state_dict(), | |
scheduler_state_dict=self.scheduler.state_dict(), | |
step=step, | |
) | |
if not os.path.exists(self.checkpoint_path): | |
os.makedirs(self.checkpoint_path) | |
if last: | |
self.accelerator.save( | |
checkpoint, f"{self.checkpoint_path}/model_last.pt" | |
) | |
else: | |
self.accelerator.save( | |
checkpoint, f"{self.checkpoint_path}/model_{step}.pt" | |
) | |
def load_checkpoint(self): | |
if ( | |
not exists(self.checkpoint_path) | |
or not os.path.exists(self.checkpoint_path) | |
or not any( | |
filename.endswith(".pt") | |
for filename in os.listdir(self.checkpoint_path) | |
) | |
): | |
return 0 | |
self.accelerator.wait_for_everyone() | |
if "model_last.pt" in os.listdir(self.checkpoint_path): | |
latest_checkpoint = "model_last.pt" | |
else: | |
latest_checkpoint = sorted( | |
[f for f in os.listdir(self.checkpoint_path) if f.endswith(".pt")], | |
key=lambda x: int("".join(filter(str.isdigit, x))), | |
)[-1] | |
print(f"To load from {latest_checkpoint}.") | |
# checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", map_location=self.accelerator.device) # rather use accelerator.load_state ಥ_ಥ | |
checkpoint = torch.load( | |
f"{self.checkpoint_path}/{latest_checkpoint}", | |
weights_only=True, | |
map_location="cpu", | |
) | |
print(f"Loaded from {latest_checkpoint}.") | |
if "step" in checkpoint: | |
# patch for backward compatibility, 305e3ea | |
for key in [ | |
"mel_spec.mel_stft.mel_scale.fb", | |
"mel_spec.mel_stft.spectrogram.window", | |
]: | |
if key in checkpoint["model_state_dict"]: | |
del checkpoint["model_state_dict"][key] | |
self.accelerator.unwrap_model(self.model).load_state_dict( | |
checkpoint["model_state_dict"] | |
) | |
self.accelerator.unwrap_model(self.optimizer).load_state_dict( | |
checkpoint["optimizer_state_dict"] | |
) | |
if self.scheduler: | |
self.scheduler.load_state_dict(checkpoint["scheduler_state_dict"]) | |
step = checkpoint["step"] | |
else: | |
checkpoint["model_state_dict"] = { | |
k.replace("ema_model.", ""): v | |
for k, v in checkpoint["ema_model_state_dict"].items() | |
if k not in ["initted", "step"] | |
} | |
self.accelerator.unwrap_model(self.model).load_state_dict( | |
checkpoint["model_state_dict"] | |
) | |
step = 0 | |
del checkpoint | |
gc.collect() | |
print(f"Exit load_checkpoint.") | |
return step | |
def validate(self, valid_dataloader, global_step): | |
""" | |
Runs evaluation on the validation set, computes the average loss, | |
and logs the average validation loss along with the CTC decoded strings. | |
""" | |
self.model.eval() | |
total_valid_loss = 0.0 | |
total_sec_error = 0.0 | |
count = 0 | |
# Iterate over the validation dataloader | |
with torch.no_grad(): | |
for batch in valid_dataloader: | |
# Inputs | |
prompt_mel = batch["pmt_mel_specs"].permute(0, 2, 1) # (B, L_mel, D) | |
prompt_text = batch["pmt_text"] | |
text = batch["text"] | |
target_ids = list_str_to_idx(text, self.vocab_char_map).to( | |
prompt_mel.device | |
) | |
target_ids = target_ids.masked_fill(target_ids == -1, vocab_size) | |
prompt_ids = list_str_to_idx(prompt_text, self.vocab_char_map).to( | |
prompt_mel.device | |
) | |
prompt_ids = prompt_ids.masked_fill(prompt_ids == -1, vocab_size) | |
# Targets | |
tar_lengths = batch["mel_lengths"] | |
# Forward | |
predictions = SLP( | |
target_ids=target_ids, prompt_ids=prompt_ids, prompt_mel=prompt_mel | |
) # (B, C) | |
if self.loss_fn == "CE": | |
tar_length_labels = (tar_lengths // self.n_frame_per_class).clamp( | |
min=0, max=self.n_class - 1 | |
) # [0, 1, ..., n_class-1] | |
est_length_logtis = predictions | |
est_length_labels = torch.argmax(est_length_logtis, dim=-1) | |
loss = F.cross_entropy(est_length_logtis, tar_length_labels) | |
est_lengths = est_length_labels * self.n_frame_per_class | |
frame_error = ( | |
(est_lengths.float() - tar_lengths.float()).abs().mean() | |
) | |
sec_error = frame_error * 256 / 24000 | |
total_sec_error += sec_error.item() | |
total_valid_loss += loss.item() | |
count += 1 | |
avg_valid_loss = total_valid_loss / count if count > 0 else 0.0 | |
avg_valid_sec_error = total_sec_error / count if count > 0 else 0.0 | |
# Log validation metrics | |
self.accelerator.log( | |
{f"valid_loss": avg_valid_loss, f"valid_sec_error": avg_valid_sec_error}, | |
step=global_step, | |
) | |
self.model.train() | |
def train( | |
self, | |
train_dataset: Dataset, | |
valid_dataset: Dataset, | |
num_workers=64, | |
resumable_with_seed: int = None, | |
): | |
if exists(resumable_with_seed): | |
generator = torch.Generator() | |
generator.manual_seed(resumable_with_seed) | |
else: | |
generator = None | |
# Create training dataloader using the appropriate batching strategy | |
if self.batch_size_type == "sample": | |
train_dataloader = DataLoader( | |
train_dataset, | |
collate_fn=collate_fn, | |
num_workers=num_workers, | |
pin_memory=True, | |
persistent_workers=True, | |
batch_size=self.batch_size, | |
shuffle=True, | |
generator=generator, | |
) | |
# Create validation dataloader (always sequential, no shuffling) | |
valid_dataloader = DataLoader( | |
valid_dataset, | |
collate_fn=collate_fn, | |
num_workers=num_workers, | |
pin_memory=True, | |
batch_size=self.batch_size, | |
shuffle=False, | |
) | |
elif self.batch_size_type == "frame": | |
self.accelerator.even_batches = False | |
sampler = SequentialSampler(train_dataset) | |
batch_sampler = DynamicBatchSampler( | |
sampler, | |
self.batch_size, | |
max_samples=self.max_samples, | |
random_seed=resumable_with_seed, | |
drop_last=False, | |
) | |
train_dataloader = DataLoader( | |
train_dataset, | |
collate_fn=collate_fn, | |
num_workers=num_workers, | |
pin_memory=True, | |
persistent_workers=True, | |
batch_sampler=batch_sampler, | |
) | |
sampler = SequentialSampler(valid_dataset) | |
batch_sampler = DynamicBatchSampler( | |
sampler, | |
self.batch_size, | |
max_samples=self.max_samples, | |
random_seed=resumable_with_seed, | |
drop_last=False, | |
) | |
# Create validation dataloader (always sequential, no shuffling) | |
valid_dataloader = DataLoader( | |
valid_dataset, | |
collate_fn=collate_fn, | |
num_workers=num_workers, | |
pin_memory=True, | |
persistent_workers=True, | |
batch_sampler=batch_sampler, | |
) | |
else: | |
raise ValueError( | |
f"batch_size_type must be either 'sample' or 'frame', but received {self.batch_size_type}" | |
) | |
# accelerator.prepare() dispatches batches to devices; | |
# which means the length of dataloader calculated before, should consider the number of devices | |
warmup_steps = ( | |
self.num_warmup_updates * self.accelerator.num_processes | |
) # consider a fixed warmup steps while using accelerate multi-gpu ddp | |
# otherwise by default with split_batches=False, warmup steps change with num_processes | |
total_steps = len(train_dataloader) * self.epochs / self.grad_accumulation_steps | |
decay_steps = total_steps - warmup_steps | |
warmup_scheduler = LinearLR( | |
self.optimizer, start_factor=1e-8, end_factor=1.0, total_iters=warmup_steps | |
) | |
decay_scheduler = LinearLR( | |
self.optimizer, start_factor=1.0, end_factor=1e-8, total_iters=decay_steps | |
) | |
self.scheduler = SequentialLR( | |
self.optimizer, | |
schedulers=[warmup_scheduler, decay_scheduler], | |
milestones=[warmup_steps], | |
) | |
train_dataloader, self.scheduler = self.accelerator.prepare( | |
train_dataloader, self.scheduler | |
) # actual steps = 1 gpu steps / gpus | |
start_step = self.load_checkpoint() | |
global_step = start_step | |
valid_dataloader = self.accelerator.prepare(valid_dataloader) | |
if exists(resumable_with_seed): | |
orig_epoch_step = len(train_dataloader) | |
skipped_epoch = int(start_step // orig_epoch_step) | |
skipped_batch = start_step % orig_epoch_step | |
skipped_dataloader = self.accelerator.skip_first_batches( | |
train_dataloader, num_batches=skipped_batch | |
) | |
else: | |
skipped_epoch = 0 | |
for epoch in range(skipped_epoch, self.epochs): | |
self.model.train() | |
if exists(resumable_with_seed) and epoch == skipped_epoch: | |
progress_bar = tqdm( | |
skipped_dataloader, | |
desc=f"Epoch {epoch+1}/{self.epochs}", | |
unit="step", | |
disable=not self.accelerator.is_local_main_process, | |
initial=skipped_batch, | |
total=orig_epoch_step, | |
) | |
else: | |
progress_bar = tqdm( | |
train_dataloader, | |
desc=f"Epoch {epoch+1}/{self.epochs}", | |
unit="step", | |
disable=not self.accelerator.is_local_main_process, | |
) | |
for batch in progress_bar: | |
with self.accelerator.accumulate(self.model): | |
# Inputs | |
prompt_mel = batch["pmt_mel_specs"].permute( | |
0, 2, 1 | |
) # (B, L_mel, D) | |
prompt_text = batch["pmt_text"] | |
text = batch["text"] | |
target_ids = list_str_to_idx(text, self.vocab_char_map).to( | |
prompt_mel.device | |
) | |
target_ids = target_ids.masked_fill(target_ids == -1, vocab_size) | |
prompt_ids = list_str_to_idx(prompt_text, self.vocab_char_map).to( | |
prompt_mel.device | |
) | |
prompt_ids = prompt_ids.masked_fill(prompt_ids == -1, vocab_size) | |
# Targets | |
tar_lengths = batch["mel_lengths"] | |
# Forward | |
predictions = SLP( | |
target_ids=target_ids, | |
prompt_ids=prompt_ids, | |
prompt_mel=prompt_mel, | |
) # (B, C) | |
if self.loss_fn == "CE": | |
tar_length_labels = ( | |
tar_lengths // self.n_frame_per_class | |
).clamp( | |
min=0, max=self.n_class - 1 | |
) # [0, 1, ..., n_class-1] | |
est_length_logtis = predictions | |
est_length_labels = torch.argmax(est_length_logtis, dim=-1) | |
loss = F.cross_entropy(est_length_logtis, tar_length_labels) | |
with torch.no_grad(): | |
est_lengths = est_length_labels * self.n_frame_per_class | |
frame_error = ( | |
(est_lengths.float() - tar_lengths.float()).abs().mean() | |
) | |
sec_error = frame_error * 256 / 24000 | |
log_dict = { | |
"loss": loss.item(), | |
"loss_CE": loss.item(), | |
"sec_error": sec_error.item(), | |
"lr": self.scheduler.get_last_lr()[0], | |
} | |
else: | |
raise NotImplementedError(self.loss_fn) | |
self.accelerator.backward(loss) | |
if self.max_grad_norm > 0 and self.accelerator.sync_gradients: | |
self.accelerator.clip_grad_norm_( | |
self.model.parameters(), self.max_grad_norm | |
) | |
self.optimizer.step() | |
self.scheduler.step() | |
self.optimizer.zero_grad() | |
global_step += 1 | |
if self.accelerator.is_local_main_process: | |
self.accelerator.log(log_dict, step=global_step) | |
progress_bar.set_postfix(step=str(global_step), loss=loss.item()) | |
if ( | |
global_step % (self.save_per_updates * self.grad_accumulation_steps) | |
== 0 | |
): | |
self.save_checkpoint(global_step) | |
# if self.log_samples and self.accelerator.is_local_main_process: | |
# Run validation at the end of each epoch (only on the main process) | |
if self.accelerator.is_local_main_process: | |
self.validate(valid_dataloader, global_step) | |
# if global_step % self.last_per_steps == 0: | |
# self.save_checkpoint(global_step, last=True) | |
self.save_checkpoint(global_step, last=True) | |
self.accelerator.end_training() | |