DMOSpeech2 / ecapa_tdnn.py
mrfakename's picture
pt 1
597cecf
# part of the code is borrowed from https://github.com/lawlict/ECAPA-TDNN
# from ctcmodel_nopool import ConformerCTC as ConformerCTCNoPool
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio.transforms as trans
from ctcmodel import ConformerCTC
""" Res2Conv1d + BatchNorm1d + ReLU
"""
class Res2Conv1dReluBn(nn.Module):
"""
in_channels == out_channels == channels
"""
def __init__(
self,
channels,
kernel_size=1,
stride=1,
padding=0,
dilation=1,
bias=True,
scale=4,
):
super().__init__()
assert channels % scale == 0, "{} % {} != 0".format(channels, scale)
self.scale = scale
self.width = channels // scale
self.nums = scale if scale == 1 else scale - 1
self.convs = []
self.bns = []
for i in range(self.nums):
self.convs.append(
nn.Conv1d(
self.width,
self.width,
kernel_size,
stride,
padding,
dilation,
bias=bias,
)
)
self.bns.append(nn.BatchNorm1d(self.width))
self.convs = nn.ModuleList(self.convs)
self.bns = nn.ModuleList(self.bns)
def forward(self, x):
out = []
spx = torch.split(x, self.width, 1)
for i in range(self.nums):
if i == 0:
sp = spx[i]
else:
sp = sp + spx[i]
# Order: conv -> relu -> bn
sp = self.convs[i](sp)
sp = self.bns[i](F.relu(sp))
out.append(sp)
if self.scale != 1:
out.append(spx[self.nums])
out = torch.cat(out, dim=1)
return out
""" Conv1d + BatchNorm1d + ReLU
"""
class Conv1dReluBn(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
dilation=1,
bias=True,
):
super().__init__()
self.conv = nn.Conv1d(
in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias
)
self.bn = nn.BatchNorm1d(out_channels)
def forward(self, x):
return self.bn(F.relu(self.conv(x)))
""" The SE connection of 1D case.
"""
class SE_Connect(nn.Module):
def __init__(self, channels, se_bottleneck_dim=128):
super().__init__()
self.linear1 = nn.Linear(channels, se_bottleneck_dim)
self.linear2 = nn.Linear(se_bottleneck_dim, channels)
def forward(self, x):
out = x.mean(dim=2)
out = F.relu(self.linear1(out))
out = torch.sigmoid(self.linear2(out))
out = x * out.unsqueeze(2)
return out
""" SE-Res2Block of the ECAPA-TDNN architecture.
"""
class SE_Res2Block(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
scale,
se_bottleneck_dim,
):
super().__init__()
self.Conv1dReluBn1 = Conv1dReluBn(
in_channels, out_channels, kernel_size=1, stride=1, padding=0
)
self.Res2Conv1dReluBn = Res2Conv1dReluBn(
out_channels, kernel_size, stride, padding, dilation, scale=scale
)
self.Conv1dReluBn2 = Conv1dReluBn(
out_channels, out_channels, kernel_size=1, stride=1, padding=0
)
self.SE_Connect = SE_Connect(out_channels, se_bottleneck_dim)
self.shortcut = None
if in_channels != out_channels:
self.shortcut = nn.Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
)
def forward(self, x):
residual = x
if self.shortcut:
residual = self.shortcut(x)
x = self.Conv1dReluBn1(x)
x = self.Res2Conv1dReluBn(x)
x = self.Conv1dReluBn2(x)
x = self.SE_Connect(x)
return x + residual
""" Attentive weighted mean and standard deviation pooling.
"""
class AttentiveStatsPool(nn.Module):
def __init__(self, in_dim, attention_channels=128, global_context_att=False):
super().__init__()
self.global_context_att = global_context_att
# Use Conv1d with stride == 1 rather than Linear, then we don't need to transpose inputs.
if global_context_att:
self.linear1 = nn.Conv1d(
in_dim * 3, attention_channels, kernel_size=1
) # equals W and b in the paper
else:
self.linear1 = nn.Conv1d(
in_dim, attention_channels, kernel_size=1
) # equals W and b in the paper
self.linear2 = nn.Conv1d(
attention_channels, in_dim, kernel_size=1
) # equals V and k in the paper
def forward(self, x):
if self.global_context_att:
context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x)
context_std = torch.sqrt(
torch.var(x, dim=-1, keepdim=True) + 1e-10
).expand_as(x)
x_in = torch.cat((x, context_mean, context_std), dim=1)
else:
x_in = x
# DON'T use ReLU here! In experiments, I find ReLU hard to converge.
alpha = torch.tanh(self.linear1(x_in))
# alpha = F.relu(self.linear1(x_in))
alpha = torch.softmax(self.linear2(alpha), dim=2)
mean = torch.sum(alpha * x, dim=2)
residuals = torch.sum(alpha * (x**2), dim=2) - mean**2
std = torch.sqrt(residuals.clamp(min=1e-9))
return torch.cat([mean, std], dim=1)
class ECAPA_TDNN(nn.Module):
def __init__(
self,
channels=512,
emb_dim=512,
global_context_att=False,
use_fp16=True,
ctc_cls=ConformerCTC,
ctc_path="/data4/F5TTS/ckpts/F5TTS_norm_ASR_vocos_pinyin_Emilia_ZH_EN/model_last.pt",
ctc_args={
"vocab_size": 2545,
"mel_dim": 100,
"num_heads": 8,
"d_hid": 512,
"nlayers": 6,
},
ctc_no_grad=False,
):
super().__init__()
if ctc_path != None:
ctc_path = Path(ctc_path)
model = ctc_cls(**ctc_args)
state_dict = torch.load(ctc_path, map_location="cpu")
model.load_state_dict(state_dict["model_state_dict"])
print(f"Initialized pretrained ConformerCTC backbone from {ctc_path}.")
else:
raise ValueError(ctc_path)
self.ctc_model = model
self.ctc_model.out.requires_grad_(False)
if ctc_cls == ConformerCTC:
self.feat_num = ctc_args["nlayers"] + 2 + 1
# elif ctc_cls == ConformerCTCNoPool:
# self.feat_num = ctc_args['nlayers'] + 1
else:
raise ValueError(ctc_cls)
feat_dim = ctc_args["d_hid"]
self.emb_dim = emb_dim
self.feature_weight = nn.Parameter(torch.zeros(self.feat_num))
self.instance_norm = nn.InstanceNorm1d(feat_dim)
# self.channels = [channels] * 4 + [channels * 3]
self.channels = [channels] * 4 + [1536]
self.layer1 = Conv1dReluBn(feat_dim, self.channels[0], kernel_size=5, padding=2)
self.layer2 = SE_Res2Block(
self.channels[0],
self.channels[1],
kernel_size=3,
stride=1,
padding=2,
dilation=2,
scale=8,
se_bottleneck_dim=128,
)
self.layer3 = SE_Res2Block(
self.channels[1],
self.channels[2],
kernel_size=3,
stride=1,
padding=3,
dilation=3,
scale=8,
se_bottleneck_dim=128,
)
self.layer4 = SE_Res2Block(
self.channels[2],
self.channels[3],
kernel_size=3,
stride=1,
padding=4,
dilation=4,
scale=8,
se_bottleneck_dim=128,
)
# self.conv = nn.Conv1d(self.channels[-1], self.channels[-1], kernel_size=1)
cat_channels = channels * 3
self.conv = nn.Conv1d(cat_channels, self.channels[-1], kernel_size=1)
self.pooling = AttentiveStatsPool(
self.channels[-1],
attention_channels=128,
global_context_att=global_context_att,
)
self.bn = nn.BatchNorm1d(self.channels[-1] * 2)
self.linear = nn.Linear(self.channels[-1] * 2, emb_dim)
if ctc_no_grad:
for param in self.ctc_model.parameters():
param.requires_grad = False
self.ctc_model = self.ctc_model.eval()
else:
self.ctc_model = self.ctc_model.train()
self.ctc_no_grad = ctc_no_grad
print("ctc_no_grad: ", self.ctc_no_grad)
def forward(self, latent, input_lengths, return_asr=False):
if self.ctc_no_grad:
with torch.no_grad():
asr, h = self.ctc_model(latent, input_lengths)
else:
asr, h = self.ctc_model(latent, input_lengths)
x = torch.stack(h, dim=0)
norm_weights = (
F.softmax(self.feature_weight, dim=-1)
.unsqueeze(-1)
.unsqueeze(-1)
.unsqueeze(-1)
)
x = (norm_weights * x).sum(dim=0)
x = x + 1e-6
# x = torch.transpose(x, 1, 2) + 1e-6
x = self.instance_norm(x)
# x = torch.transpose(x, 1, 2)
out1 = self.layer1(x)
out2 = self.layer2(out1)
out3 = self.layer3(out2)
out4 = self.layer4(out3)
out = torch.cat([out2, out3, out4], dim=1)
out = F.relu(self.conv(out))
out = self.bn(self.pooling(out))
out = self.linear(out)
if return_asr:
return out, asr
return out
if __name__ == "__main__":
from diffspeech.data.collate import get_mask_from_lengths
from diffspeech.ldm.model import DiT
from diffspeech.tools.text.vocab import IPA
bsz = 3
# Sample ipa
ipa_lens = torch.randint(10, 50, (bsz,)).cuda()
ipa_mask = get_mask_from_lengths(ipa_lens).cuda()
ipa = torch.randint(0, len(IPA.vocab), (bsz, ipa_mask.size(-1))).cuda()
# Sample latent
latent_lens = torch.randint(50, 250, (bsz,)).cuda()
latent_mask = get_mask_from_lengths(latent_lens).cuda()
latent = torch.randn(bsz, latent_mask.size(-1), 64).cuda()
# Sample prompt
prompt_mask = get_mask_from_lengths(
(latent_lens * 0.25).long(), max_len=latent_mask.size(-1)
).cuda()
prompt_latent = latent * prompt_mask.unsqueeze(-1)
model = ECAPA_TDNN(emb_dim=512).cuda()
emb = model(latent, latent_mask.sum(axis=-1))
print(emb.shape)