Spaces:
Running
on
Zero
Running
on
Zero
# part of the code is borrowed from https://github.com/lawlict/ECAPA-TDNN | |
# from ctcmodel_nopool import ConformerCTC as ConformerCTCNoPool | |
from pathlib import Path | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchaudio.transforms as trans | |
from ctcmodel import ConformerCTC | |
""" Res2Conv1d + BatchNorm1d + ReLU | |
""" | |
class Res2Conv1dReluBn(nn.Module): | |
""" | |
in_channels == out_channels == channels | |
""" | |
def __init__( | |
self, | |
channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
dilation=1, | |
bias=True, | |
scale=4, | |
): | |
super().__init__() | |
assert channels % scale == 0, "{} % {} != 0".format(channels, scale) | |
self.scale = scale | |
self.width = channels // scale | |
self.nums = scale if scale == 1 else scale - 1 | |
self.convs = [] | |
self.bns = [] | |
for i in range(self.nums): | |
self.convs.append( | |
nn.Conv1d( | |
self.width, | |
self.width, | |
kernel_size, | |
stride, | |
padding, | |
dilation, | |
bias=bias, | |
) | |
) | |
self.bns.append(nn.BatchNorm1d(self.width)) | |
self.convs = nn.ModuleList(self.convs) | |
self.bns = nn.ModuleList(self.bns) | |
def forward(self, x): | |
out = [] | |
spx = torch.split(x, self.width, 1) | |
for i in range(self.nums): | |
if i == 0: | |
sp = spx[i] | |
else: | |
sp = sp + spx[i] | |
# Order: conv -> relu -> bn | |
sp = self.convs[i](sp) | |
sp = self.bns[i](F.relu(sp)) | |
out.append(sp) | |
if self.scale != 1: | |
out.append(spx[self.nums]) | |
out = torch.cat(out, dim=1) | |
return out | |
""" Conv1d + BatchNorm1d + ReLU | |
""" | |
class Conv1dReluBn(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
dilation=1, | |
bias=True, | |
): | |
super().__init__() | |
self.conv = nn.Conv1d( | |
in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias | |
) | |
self.bn = nn.BatchNorm1d(out_channels) | |
def forward(self, x): | |
return self.bn(F.relu(self.conv(x))) | |
""" The SE connection of 1D case. | |
""" | |
class SE_Connect(nn.Module): | |
def __init__(self, channels, se_bottleneck_dim=128): | |
super().__init__() | |
self.linear1 = nn.Linear(channels, se_bottleneck_dim) | |
self.linear2 = nn.Linear(se_bottleneck_dim, channels) | |
def forward(self, x): | |
out = x.mean(dim=2) | |
out = F.relu(self.linear1(out)) | |
out = torch.sigmoid(self.linear2(out)) | |
out = x * out.unsqueeze(2) | |
return out | |
""" SE-Res2Block of the ECAPA-TDNN architecture. | |
""" | |
class SE_Res2Block(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride, | |
padding, | |
dilation, | |
scale, | |
se_bottleneck_dim, | |
): | |
super().__init__() | |
self.Conv1dReluBn1 = Conv1dReluBn( | |
in_channels, out_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.Res2Conv1dReluBn = Res2Conv1dReluBn( | |
out_channels, kernel_size, stride, padding, dilation, scale=scale | |
) | |
self.Conv1dReluBn2 = Conv1dReluBn( | |
out_channels, out_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.SE_Connect = SE_Connect(out_channels, se_bottleneck_dim) | |
self.shortcut = None | |
if in_channels != out_channels: | |
self.shortcut = nn.Conv1d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=1, | |
) | |
def forward(self, x): | |
residual = x | |
if self.shortcut: | |
residual = self.shortcut(x) | |
x = self.Conv1dReluBn1(x) | |
x = self.Res2Conv1dReluBn(x) | |
x = self.Conv1dReluBn2(x) | |
x = self.SE_Connect(x) | |
return x + residual | |
""" Attentive weighted mean and standard deviation pooling. | |
""" | |
class AttentiveStatsPool(nn.Module): | |
def __init__(self, in_dim, attention_channels=128, global_context_att=False): | |
super().__init__() | |
self.global_context_att = global_context_att | |
# Use Conv1d with stride == 1 rather than Linear, then we don't need to transpose inputs. | |
if global_context_att: | |
self.linear1 = nn.Conv1d( | |
in_dim * 3, attention_channels, kernel_size=1 | |
) # equals W and b in the paper | |
else: | |
self.linear1 = nn.Conv1d( | |
in_dim, attention_channels, kernel_size=1 | |
) # equals W and b in the paper | |
self.linear2 = nn.Conv1d( | |
attention_channels, in_dim, kernel_size=1 | |
) # equals V and k in the paper | |
def forward(self, x): | |
if self.global_context_att: | |
context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x) | |
context_std = torch.sqrt( | |
torch.var(x, dim=-1, keepdim=True) + 1e-10 | |
).expand_as(x) | |
x_in = torch.cat((x, context_mean, context_std), dim=1) | |
else: | |
x_in = x | |
# DON'T use ReLU here! In experiments, I find ReLU hard to converge. | |
alpha = torch.tanh(self.linear1(x_in)) | |
# alpha = F.relu(self.linear1(x_in)) | |
alpha = torch.softmax(self.linear2(alpha), dim=2) | |
mean = torch.sum(alpha * x, dim=2) | |
residuals = torch.sum(alpha * (x**2), dim=2) - mean**2 | |
std = torch.sqrt(residuals.clamp(min=1e-9)) | |
return torch.cat([mean, std], dim=1) | |
class ECAPA_TDNN(nn.Module): | |
def __init__( | |
self, | |
channels=512, | |
emb_dim=512, | |
global_context_att=False, | |
use_fp16=True, | |
ctc_cls=ConformerCTC, | |
ctc_path="/data4/F5TTS/ckpts/F5TTS_norm_ASR_vocos_pinyin_Emilia_ZH_EN/model_last.pt", | |
ctc_args={ | |
"vocab_size": 2545, | |
"mel_dim": 100, | |
"num_heads": 8, | |
"d_hid": 512, | |
"nlayers": 6, | |
}, | |
ctc_no_grad=False, | |
): | |
super().__init__() | |
if ctc_path != None: | |
ctc_path = Path(ctc_path) | |
model = ctc_cls(**ctc_args) | |
state_dict = torch.load(ctc_path, map_location="cpu") | |
model.load_state_dict(state_dict["model_state_dict"]) | |
print(f"Initialized pretrained ConformerCTC backbone from {ctc_path}.") | |
else: | |
raise ValueError(ctc_path) | |
self.ctc_model = model | |
self.ctc_model.out.requires_grad_(False) | |
if ctc_cls == ConformerCTC: | |
self.feat_num = ctc_args["nlayers"] + 2 + 1 | |
# elif ctc_cls == ConformerCTCNoPool: | |
# self.feat_num = ctc_args['nlayers'] + 1 | |
else: | |
raise ValueError(ctc_cls) | |
feat_dim = ctc_args["d_hid"] | |
self.emb_dim = emb_dim | |
self.feature_weight = nn.Parameter(torch.zeros(self.feat_num)) | |
self.instance_norm = nn.InstanceNorm1d(feat_dim) | |
# self.channels = [channels] * 4 + [channels * 3] | |
self.channels = [channels] * 4 + [1536] | |
self.layer1 = Conv1dReluBn(feat_dim, self.channels[0], kernel_size=5, padding=2) | |
self.layer2 = SE_Res2Block( | |
self.channels[0], | |
self.channels[1], | |
kernel_size=3, | |
stride=1, | |
padding=2, | |
dilation=2, | |
scale=8, | |
se_bottleneck_dim=128, | |
) | |
self.layer3 = SE_Res2Block( | |
self.channels[1], | |
self.channels[2], | |
kernel_size=3, | |
stride=1, | |
padding=3, | |
dilation=3, | |
scale=8, | |
se_bottleneck_dim=128, | |
) | |
self.layer4 = SE_Res2Block( | |
self.channels[2], | |
self.channels[3], | |
kernel_size=3, | |
stride=1, | |
padding=4, | |
dilation=4, | |
scale=8, | |
se_bottleneck_dim=128, | |
) | |
# self.conv = nn.Conv1d(self.channels[-1], self.channels[-1], kernel_size=1) | |
cat_channels = channels * 3 | |
self.conv = nn.Conv1d(cat_channels, self.channels[-1], kernel_size=1) | |
self.pooling = AttentiveStatsPool( | |
self.channels[-1], | |
attention_channels=128, | |
global_context_att=global_context_att, | |
) | |
self.bn = nn.BatchNorm1d(self.channels[-1] * 2) | |
self.linear = nn.Linear(self.channels[-1] * 2, emb_dim) | |
if ctc_no_grad: | |
for param in self.ctc_model.parameters(): | |
param.requires_grad = False | |
self.ctc_model = self.ctc_model.eval() | |
else: | |
self.ctc_model = self.ctc_model.train() | |
self.ctc_no_grad = ctc_no_grad | |
print("ctc_no_grad: ", self.ctc_no_grad) | |
def forward(self, latent, input_lengths, return_asr=False): | |
if self.ctc_no_grad: | |
with torch.no_grad(): | |
asr, h = self.ctc_model(latent, input_lengths) | |
else: | |
asr, h = self.ctc_model(latent, input_lengths) | |
x = torch.stack(h, dim=0) | |
norm_weights = ( | |
F.softmax(self.feature_weight, dim=-1) | |
.unsqueeze(-1) | |
.unsqueeze(-1) | |
.unsqueeze(-1) | |
) | |
x = (norm_weights * x).sum(dim=0) | |
x = x + 1e-6 | |
# x = torch.transpose(x, 1, 2) + 1e-6 | |
x = self.instance_norm(x) | |
# x = torch.transpose(x, 1, 2) | |
out1 = self.layer1(x) | |
out2 = self.layer2(out1) | |
out3 = self.layer3(out2) | |
out4 = self.layer4(out3) | |
out = torch.cat([out2, out3, out4], dim=1) | |
out = F.relu(self.conv(out)) | |
out = self.bn(self.pooling(out)) | |
out = self.linear(out) | |
if return_asr: | |
return out, asr | |
return out | |
if __name__ == "__main__": | |
from diffspeech.data.collate import get_mask_from_lengths | |
from diffspeech.ldm.model import DiT | |
from diffspeech.tools.text.vocab import IPA | |
bsz = 3 | |
# Sample ipa | |
ipa_lens = torch.randint(10, 50, (bsz,)).cuda() | |
ipa_mask = get_mask_from_lengths(ipa_lens).cuda() | |
ipa = torch.randint(0, len(IPA.vocab), (bsz, ipa_mask.size(-1))).cuda() | |
# Sample latent | |
latent_lens = torch.randint(50, 250, (bsz,)).cuda() | |
latent_mask = get_mask_from_lengths(latent_lens).cuda() | |
latent = torch.randn(bsz, latent_mask.size(-1), 64).cuda() | |
# Sample prompt | |
prompt_mask = get_mask_from_lengths( | |
(latent_lens * 0.25).long(), max_len=latent_mask.size(-1) | |
).cuda() | |
prompt_latent = latent * prompt_mask.unsqueeze(-1) | |
model = ECAPA_TDNN(emb_dim=512).cuda() | |
emb = model(latent, latent_mask.sum(axis=-1)) | |
print(emb.shape) | |