Spaces:
Running
on
Zero
Running
on
Zero
hydra: | |
run: | |
dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S} | |
datasets: | |
name: Emilia_ZH_EN # dataset name | |
batch_size_per_gpu: 38400 # 8 GPUs, 8 * 38400 = 307200 | |
batch_size_type: frame # frame | sample | |
max_samples: 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models | |
num_workers: 16 | |
optim: | |
epochs: 11 | |
learning_rate: 7.5e-5 | |
num_warmup_updates: 20000 # warmup updates | |
grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps | |
max_grad_norm: 1.0 # gradient clipping | |
bnb_optimizer: False # use bnb 8bit AdamW optimizer or not | |
model: | |
name: E2TTS_Base | |
tokenizer: pinyin | |
tokenizer_path: null # if 'custom' tokenizer, define the path want to use (should be vocab.txt) | |
backbone: UNetT | |
arch: | |
dim: 1024 | |
depth: 24 | |
heads: 16 | |
ff_mult: 4 | |
text_mask_padding: False | |
pe_attn_head: 1 | |
mel_spec: | |
target_sample_rate: 24000 | |
n_mel_channels: 100 | |
hop_length: 256 | |
win_length: 1024 | |
n_fft: 1024 | |
mel_spec_type: vocos # vocos | bigvgan | |
vocoder: | |
is_local: False # use local offline ckpt or not | |
local_path: null # local vocoder path | |
ckpts: | |
logger: wandb # wandb | tensorboard | null | |
log_samples: True # infer random sample per save checkpoint. wip, normal to fail with extra long samples | |
save_per_updates: 50000 # save checkpoint per updates | |
keep_last_n_checkpoints: -1 # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints | |
last_per_updates: 5000 # save last checkpoint per updates | |
save_dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name} |