DMOSpeech2 / grpo_duration_trainer.py
mrfakename's picture
pt 1
597cecf
import copy
import gc
import io
import json
import os
import random
import time
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
import wandb
from accelerate import Accelerator
from accelerate.utils import DistributedDataParallelKwargs
from torch.optim import AdamW
from torch.optim.lr_scheduler import LinearLR, SequentialLR
from torch.utils.data import DataLoader, Dataset, SequentialSampler, Subset
from tqdm import tqdm
from f5_tts.model.dataset import DynamicBatchSampler, collate_fn
from f5_tts.model.utils import list_str_to_idx
# torch.autograd.set_detect_anomaly(True)
# os.environ['HYDRA_FULL_ERROR'] = 'True'
def safe_sample(logits, temperature=1.0):
"""
logits: Tensor of shape (B, n_class)
temperature: Sampling temperature (higher => more random)
"""
# Apply temperature scaling
scaled_logits = logits / temperature
# Compute categorical distribution
probs = F.softmax(scaled_logits, dim=-1)
# Sample from the distribution once per batch element
samples = torch.multinomial(probs, num_samples=1) # (B, 1)
# Convert to one-hot encoding
one_hot_samples = torch.zeros_like(probs).scatter_(1, samples, 1)
return one_hot_samples
class GRPODurationTrainer:
"""
Trainer class that implements GRPO (Generative Reinforcement Learning from Preference Optimization)
for a duration predictor in text-to-speech synthesis.
"""
def __init__(
self,
model, # Duration predictor model
inference_fn, # Function to generate speech
reward_fn, # Function to compute rewards from generated speech
vocab_size: int, # Size of the vocabulary
vocab_char_map: dict, # Mapping from characters to token IDs
# Duration model parameters
n_class: int = 301, # Number of duration classes
n_frame_per_class: int = 10, # Number of frames per class
gumbel_tau: int = 0.7,
# GRPO parameters
beta: float = 0.04, # KL regularization weight
clip_param: float = 0.2, # PPO clip parameter
num_pre_samples: int = 8, # Number of samples per prompt
compute_gen_logps: bool = True, # Whether to compute generation log probabilities
# Training parameters
learning_rate: float = 5e-6,
num_warmup_updates: int = 10000,
save_per_updates: int = 10000,
checkpoint_path: Optional[str] = None,
all_steps: int = 100000, # Total training steps
# Batch parameters
batch_size: int = 8,
batch_size_type: str = "sample",
max_samples: int = 16,
grad_accumulation_steps: int = 2,
max_grad_norm: float = 1.0,
# Logging parameters
logger: Optional[str] = "wandb",
wandb_project: str = "tts-duration-grpo",
wandb_run_name: str = "grpo_run",
wandb_resume_id: Optional[str] = None,
accelerate_kwargs: dict = dict(),
):
# Initialize accelerator for distributed training
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=False)
if logger == "wandb" and not wandb.api.api_key:
logger = None
print(f"Using logger: {logger}")
self.accelerator = Accelerator(
log_with=logger if logger == "wandb" else None,
kwargs_handlers=[ddp_kwargs],
gradient_accumulation_steps=grad_accumulation_steps,
**accelerate_kwargs,
)
self.logger = logger
if self.logger == "wandb":
if wandb_resume_id:
init_kwargs = {
"wandb": {
"resume": "allow",
"name": wandb_run_name,
"id": wandb_resume_id,
}
}
else:
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name}}
self.accelerator.init_trackers(
project_name=wandb_project,
init_kwargs=init_kwargs,
config={
"learning_rate": learning_rate,
"num_warmup_updates": num_warmup_updates,
"batch_size": batch_size,
"beta": beta,
"clip_param": clip_param,
"num_pre_samples": num_pre_samples,
"n_class": n_class,
"n_frame_per_class": n_frame_per_class,
"all_steps": all_steps,
"grad_accumulation_steps": grad_accumulation_steps,
"max_grad_norm": max_grad_norm,
"gpus": self.accelerator.num_processes,
},
)
elif self.logger == "tensorboard":
from torch.utils.tensorboard import SummaryWriter
self.writer = SummaryWriter(log_dir=f"runs/{wandb_run_name}")
# Store model, inference function, and reward function
self.model = model
# Create reference model (frozen clone of the initial model)
self.ref_model = copy.deepcopy(model)
for param in self.ref_model.parameters():
param.requires_grad = False
self.ref_model.eval()
# prepare inference_fn
self.inference_fn = inference_fn
self.inference_fn.scale = self.inference_fn.scale.to(self.accelerator.device)
self.inference_fn.tts_model = self.inference_fn.tts_model.to(
self.accelerator.device
)
# prepare reward_fn
self.reward_fn = reward_fn
# Store vocabulary and mapping
self.vocab_size = vocab_size
self.vocab_char_map = vocab_char_map
# Store duration model parameters
self.n_class = n_class
self.n_frame_per_class = n_frame_per_class
self.gumbel_tau = gumbel_tau
# Store GRPO parameters
self.beta = beta
self.clip_param = clip_param
self.num_pre_samples = num_pre_samples
self.compute_gen_logps = compute_gen_logps
# Store training parameters
self.learning_rate = learning_rate
self.num_warmup_updates: int = num_warmup_updates
self.save_per_updates = save_per_updates
self.checkpoint_path = checkpoint_path or f"ckpts/{wandb_run_name}"
self.all_steps = all_steps
# Store batch parameters
self.batch_size = batch_size
self.batch_size_type = batch_size_type
self.max_samples = max_samples
self.grad_accumulation_steps = grad_accumulation_steps
self.max_grad_norm = max_grad_norm
# Initialize optimizer
self.optimizer = AdamW(model.parameters(), lr=learning_rate)
# Prepare model and optimizer with accelerator
self.model, self.optimizer = self.accelerator.prepare(
self.model, self.optimizer
)
self.ref_model = self.accelerator.prepare(self.ref_model)
self.reward_fn, self.inference_fn = self.accelerator.prepare(
self.reward_fn, self.inference_fn
)
# GRPO batch queue
self.batch_queue = []
# Store distributed rank
self.rank = (
torch.distributed.get_rank() if torch.distributed.is_initialized() else 0
)
self.device = f"cuda:{self.rank}"
@property
def is_main(self):
return self.accelerator.is_main_process
def save_checkpoint(self, step, last=False):
"""Save model and optimizer state"""
self.accelerator.wait_for_everyone()
if self.is_main:
checkpoint = dict(
model_state_dict=self.accelerator.unwrap_model(self.model).state_dict(),
optimizer_state_dict=self.accelerator.unwrap_model(
self.optimizer
).state_dict(),
scheduler_state_dict=(
self.scheduler.state_dict() if hasattr(self, "scheduler") else None
),
step=step,
)
if not os.path.exists(self.checkpoint_path):
os.makedirs(self.checkpoint_path)
if last:
self.accelerator.save(
checkpoint, f"{self.checkpoint_path}/model_last.pt"
)
else:
self.accelerator.save(
checkpoint, f"{self.checkpoint_path}/model_{step}.pt"
)
def load_checkpoint(self):
"""Load latest checkpoint if available"""
if (
not self.checkpoint_path
or not os.path.exists(self.checkpoint_path)
or not any(
filename.endswith(".pt")
for filename in os.listdir(self.checkpoint_path)
)
):
return 0
self.accelerator.wait_for_everyone()
if "model_last.pt" in os.listdir(self.checkpoint_path):
latest_checkpoint = "model_last.pt"
else:
latest_checkpoint = sorted(
[f for f in os.listdir(self.checkpoint_path) if f.endswith(".pt")],
key=lambda x: int("".join(filter(str.isdigit, x))),
)[-1]
print(f"Loading checkpoint: {latest_checkpoint}")
checkpoint = torch.load(
f"{self.checkpoint_path}/{latest_checkpoint}",
weights_only=True,
map_location="cpu",
)
if "step" in checkpoint:
self.accelerator.unwrap_model(self.model).load_state_dict(
checkpoint["model_state_dict"]
)
self.accelerator.unwrap_model(self.optimizer).load_state_dict(
checkpoint["optimizer_state_dict"]
)
if hasattr(self, "scheduler") and checkpoint["scheduler_state_dict"]:
self.scheduler.load_state_dict(checkpoint["scheduler_state_dict"])
step = checkpoint["step"]
else:
self.accelerator.unwrap_model(self.model).load_state_dict(
checkpoint["model_state_dict"]
)
step = 0
del checkpoint
gc.collect()
print(f"Successfully loaded checkpoint at step {step}")
return step
@torch.no_grad()
def get_ref_logps(self, text_ids, mel, sampled_classes):
"""
Get log probabilities from the reference model for the sampled classes
"""
B = text_ids.shape[0]
K = self.num_pre_samples
with torch.no_grad():
ref_logits = self.ref_model(text_ids=text_ids, mel=mel)[:, -1, :]
ref_logits = ref_logits.unsqueeze(1).repeat(1, K, 1).view(B * K, -1)
ref_log_probs = F.log_softmax(ref_logits, dim=-1)
ref_logps = torch.gather(
ref_log_probs, dim=-1, index=sampled_classes.unsqueeze(-1)
).squeeze(-1)
return ref_logps
@torch.no_grad()
def generate_duration_samples(self, batch_inputs):
"""
Generate multiple duration predictions from the model for each input
and evaluate them using the inference function and reward model
Args:
batch_inputs: Dictionary with text, prompt audio, etc.
Returns:
Dictionary with duration samples, rewards, and reference logits
"""
if self.rank == 0:
print("Generating duration samples...")
# all_logits = []
all_text_ids = []
all_mels = []
all_sampled_classes = []
all_durations = []
all_rewards = []
all_gen_logps = []
all_ctc_loss = []
all_sv_loss = []
# Fetch batch inputs
# prompt_mel = batch_inputs['mel'].permute(0, 2, 1).to(self.device)
prompt_mel = batch_inputs["mel"].permute(0, 2, 1) # (B, T, 100)
prompt_text = batch_inputs["text"]
batch_size = prompt_mel.shape[0]
# Shift text to unpair 'mel' and 'text'; The shifted text will be synthesized
target_text = batch_inputs["target_text"]
target_text_lengths = torch.LongTensor([len(t) for t in target_text]).to(
prompt_mel.device
)
try:
full_text = [
prompt + [" "] + target
for prompt, target in zip(prompt_text, target_text)
]
except:
target_text = [batch_inputs["text"][-1]] + batch_inputs["text"][:-1]
target_text_lengths = batch_inputs["text_lengths"].clone().roll(1, 0)
full_text = [
prompt + [" "] + target
for prompt, target in zip(prompt_text, target_text)
]
# Goes to reward model
target_text_ids = list_str_to_idx(target_text, self.vocab_char_map).to(
self.accelerator.device
) # to device, the dataloader only gives list
# Goes to duration model and TTS
full_text_ids = list_str_to_idx(full_text, self.vocab_char_map).to(
self.accelerator.device
)
# Deepcopy to separate text_ids for SLP and TTS
slp_text_ids = full_text_ids.detach().clone()
slp_text_ids = slp_text_ids.masked_fill(
slp_text_ids == -1, self.vocab_size
) # (B, L)
# Pre-compute duration logits
K = self.num_pre_samples
B, T, _ = prompt_mel.shape
_, L = slp_text_ids.shape
# prompt_mel_k_repeats = prompt_mel.unsqueeze(1).repeat(1, K, 1, 1) # (B, K, T, 100)
# slp_text_ids_k_repeats = slp_text_ids.unsqueeze(1).repeat(1, K, 1) # (B, K, L)
# Run model once for B inputs
old_logits = self.model(
text_ids=slp_text_ids, mel=prompt_mel # (B, L) # (B, T, 100)
)[
:, -1, :
] # (B, n_class)
# Repeat each result K times along batch dimension
old_logits = old_logits.unsqueeze(1).repeat(1, K, 1) # (B, K, n_class)
# logits_nograd = logits_grad.detach().clone().view(B, K, -1) # (B, K, n_class)
for (
_full_text_ids,
_target_text_ids,
_target_text_lengths,
_prompt_mel,
_old_logits,
) in zip(
full_text_ids, target_text_ids, target_text_lengths, prompt_mel, old_logits
):
duration_sample = F.gumbel_softmax(
_old_logits, tau=self.gumbel_tau, hard=True, dim=-1
)
duration2frames = (
torch.arange(self.n_class).float().to(self.accelerator.device)
* self.n_frame_per_class
)
est_frames = (duration_sample * duration2frames).sum(-1) # (K, )
# Compute log probabilities of the samples
sampled_classes = duration_sample.argmax(dim=-1)
log_probs = F.log_softmax(_old_logits, dim=-1)
gen_logps = torch.gather(
log_probs, dim=-1, index=sampled_classes.unsqueeze(-1)
).squeeze(
-1
) # Shape: [K, n_class]
# Generate speech using the sampled durations
sampled_rewards = []
for i in range(K):
cur_duration = est_frames[i]
if cur_duration == 0:
cur_duration = cur_duration + 50 # prevent 0 duration
infer_full_text_ids = _full_text_ids.unsqueeze(0)
infer_prompt_mel = _prompt_mel.unsqueeze(0)
cur_duration = cur_duration.unsqueeze(0)
infer_target_text_ids = _target_text_ids.unsqueeze(0)
infer_target_text_lengths = _target_text_lengths.unsqueeze(0)
with torch.inference_mode():
try:
_est_mel = self.inference_fn(
full_text_ids=infer_full_text_ids,
prompt_mel=infer_prompt_mel,
target_duration=cur_duration,
teacher_steps=0,
)
_est_mel = _est_mel.permute(0, 2, 1) # (1, T, 100)
loss_dict = self.reward_fn(
prompt_mel=infer_prompt_mel,
est_mel=_est_mel,
target_text_id=infer_target_text_ids,
target_text_length=infer_target_text_lengths,
)
# #TODO reweight the loss for reward
reward_sim = loss_dict["loss_sim"] # 0 to 1
reward_ctc = loss_dict["loss_ctc"]
reward = -(reward_ctc + reward_sim * 3)
all_ctc_loss.append(reward_ctc)
all_sv_loss.append(reward_sim)
except Exception as e:
if self.rank == 0:
print(f"Error in speech synthesis: {e}")
reward = torch.tensor(-1.0).to(cur_duration.device)
sampled_rewards.append(reward)
# list with length of K
sampled_rewards = torch.stack(sampled_rewards) # (K, )
# Normalize rewards
if (sampled_rewards.max() - sampled_rewards.min()).item() > 1e-6:
sampled_rewards = (sampled_rewards - sampled_rewards.mean()) / (
sampled_rewards.std() + 1e-8
)
# Store all data
# all_logits.append(duration_logits)
# all_text_ids.append(duration_input_expanded["text_ids"])
# all_mels.append(duration_input_expanded["mel"])
all_sampled_classes.append(sampled_classes)
all_durations.append(est_frames)
all_gen_logps.append(gen_logps)
all_rewards.extend(sampled_rewards) # list with length of B*K
# Concatenate all data
# logits = torch.cat(all_logits, dim=0)
# text_ids = torch.cat(all_text_ids, dim=0)
# mels = torch.cat(all_mels, dim=0)
sampled_classes = torch.cat(all_sampled_classes, dim=0)
durations = torch.cat(all_durations, dim=0)
rewards = torch.stack(
all_rewards
) # use stack to keep the same device of elements
gen_logps = torch.cat(all_gen_logps, dim=0)
ctc_losses = torch.stack(all_ctc_loss)
sv_losses = torch.stack(all_sv_loss)
if self.is_main:
self.accelerator.log(
{
"ctc_loss": ctc_losses.mean().item(),
"sv_loss": sv_losses.mean().item(),
"reward": rewards.mean().item(),
"reward_min": rewards.min().item(),
"reward_max": rewards.max().item(),
},
step=self.global_step,
)
# # Normalize rewards
# if (rewards.max() - rewards.min()).item() > 1e-6:
# rewards = (rewards - rewards.mean()) / (rewards.std() + 1e-8)
ref_logps = self.get_ref_logps(slp_text_ids, prompt_mel, sampled_classes)
# Create batch dict similar to Qwen2.5 implementation
batch_outputs = {
# "logits": logits_grad,
"text_ids": slp_text_ids,
"prompt_mel": prompt_mel,
"rewards": rewards,
"refs": ref_logps,
"sampled_classes": sampled_classes,
"durations": durations,
}
if self.compute_gen_logps:
batch_outputs["gen_logps"] = gen_logps
if self.rank == 0:
print(
f"Generated {len(rewards)} samples with reward min/mean/max: {rewards.min().item():.4f}/{rewards.mean().item():.4f}/{rewards.max().item():.4f}"
)
return batch_outputs
def GRPO_step(self, batch):
"""
Perform a GRPO update step
Args:
batch: Dictionary with inputs, rewards, reference logits, etc.
Returns:
Loss value
"""
# Extract batch data
# NOTE: why .unsqueeze(1) ???
rewards = batch["rewards"] # .unsqueeze(1)
ref_logps = batch["refs"] # (B)
sampled_classes = batch["sampled_classes"] # (B)
prompt_mel = batch["prompt_mel"]
text_ids = batch["text_ids"]
# Forward pass to get current model logits
K = self.num_pre_samples
B, T, _ = prompt_mel.shape
_, L = text_ids.shape
cur_logits = self.model(
text_ids=text_ids, mel=prompt_mel # (B, L) # (B, T, 100)
)[:, -1, :]
cur_logits = cur_logits.unsqueeze(1).repeat(1, K, 1).view(B * K, -1)
# Compute current log probabilities for sampled actions
log_probs = F.log_softmax(cur_logits, dim=-1)
cur_logps = torch.gather(
log_probs, dim=-1, index=sampled_classes.unsqueeze(-1)
).squeeze(
-1
) # (B)
# KL divergence computation (same as in Qwen2.5 code)
# KL = exp(ref - cur) - (ref - cur) - 1
kl_div = torch.exp(ref_logps - cur_logps) - (ref_logps - cur_logps) - 1 # (B)
# Compute probability ratio for PPO
if "gen_logps" in batch:
gen_logps = batch["gen_logps"]
ratio = torch.exp(cur_logps - gen_logps)
clipped_ratio = torch.clamp(ratio, 1 - self.clip_param, 1 + self.clip_param)
loss = torch.min(ratio * rewards, clipped_ratio * rewards)
else:
# Simplification if gen_logps not available
loss = torch.exp(cur_logps - cur_logps.detach()) * rewards
# Final GRPO loss with KL regularization
loss = -(loss - self.beta * kl_div) # (B)
loss = loss.mean()
return loss
def get_batch(self):
"""Get a batch from the queue or return None if empty"""
if not self.batch_queue:
return None
return self.batch_queue.pop(0)
def generate_mode(self, num_batches=5):
"""
Generate samples and add them to the batch queue
Args:
dataset: Dataset to sample from
num_batches: Number of batches to generate
"""
if self.rank == 0:
print("Entering generate mode...")
tic = time.time()
for _ in range(num_batches):
try:
batch_inputs = next(self.train_iterator)
except StopIteration:
self.train_iterator = iter(self.train_dataloader)
batch_inputs = next(self.train_iterator)
# Generate samples and compute rewards
batch_outputs = self.generate_duration_samples(batch_inputs)
# Check if batch has sufficient reward diversity
rewards = batch_outputs["rewards"]
if (rewards.max() - rewards.min()).item() < 0.01:
if self.rank == 0:
print("Skipping batch with low reward diversity")
continue
# Add batch to queue
self.batch_queue.append(batch_outputs)
if self.rank == 0:
print(f"Exiting generate mode: {time.time() - tic:.3f}s")
def train(
self, train_dataset, valid_dataset=None, num_workers=64, resumable_with_seed=666
):
"""
Train the model using GRPO
Args:
train_dataset: Training dataset
valid_dataset: Validation dataset (optional)
num_workers: Number of workers for data loading
"""
# Create training dataloader using the appropriate batching strategy
if self.batch_size_type == "sample":
self.train_dataloader = DataLoader(
train_dataset,
collate_fn=collate_fn,
num_workers=num_workers,
pin_memory=True,
persistent_workers=True,
batch_size=self.batch_size,
shuffle=True,
generator=generator,
)
# Create validation dataloader (always sequential, no shuffling)
self.valid_dataloader = DataLoader(
valid_dataset,
collate_fn=collate_fn,
num_workers=num_workers,
pin_memory=True,
batch_size=self.batch_size,
shuffle=False,
)
self.train_iterator = iter(self.train_dataloader)
self.valid_iterator = iter(self.valid_dataloader)
elif self.batch_size_type == "frame":
self.accelerator.even_batches = False
sampler = SequentialSampler(train_dataset)
batch_sampler = DynamicBatchSampler(
sampler,
self.batch_size,
max_samples=self.max_samples,
random_seed=resumable_with_seed,
drop_last=False,
)
self.train_dataloader = DataLoader(
train_dataset,
collate_fn=collate_fn,
num_workers=num_workers,
pin_memory=True,
persistent_workers=True,
batch_sampler=batch_sampler,
)
sampler = SequentialSampler(valid_dataset)
batch_sampler = DynamicBatchSampler(
sampler,
self.batch_size,
max_samples=self.max_samples,
random_seed=resumable_with_seed,
drop_last=False,
)
# Create validation dataloader (always sequential, no shuffling)
self.valid_dataloader = DataLoader(
valid_dataset,
collate_fn=collate_fn,
num_workers=num_workers,
pin_memory=True,
persistent_workers=True,
batch_sampler=batch_sampler,
)
self.train_dataloader, self.valid_dataloader = self.accelerator.prepare(
self.train_dataloader, self.valid_dataloader
)
self.train_iterator = iter(self.train_dataloader)
self.valid_iterator = iter(self.valid_dataloader)
else:
raise ValueError(
f"batch_size_type must be either 'sample' or 'frame', but received {self.batch_size_type}"
)
# Setup schedulers
warmup_steps = self.num_warmup_updates * self.accelerator.num_processes
total_steps = self.all_steps
decay_steps = total_steps - warmup_steps
warmup_scheduler = LinearLR(
self.optimizer, start_factor=1e-8, end_factor=1.0, total_iters=warmup_steps
)
decay_scheduler = LinearLR(
self.optimizer, start_factor=1.0, end_factor=1e-8, total_iters=decay_steps
)
self.scheduler = SequentialLR(
self.optimizer,
schedulers=[warmup_scheduler, decay_scheduler],
milestones=[warmup_steps],
)
self.scheduler = self.accelerator.prepare(self.scheduler)
# Load checkpoint if available
start_step = self.load_checkpoint()
self.global_step = start_step
# Generate initial batches
self.generate_mode()
# Training loop
progress = range(1, self.all_steps + 1)
# Skip steps that are already done
progress = [step for step in progress if step > start_step]
if self.is_main:
progress = tqdm(progress, desc="Training", unit="step")
for step in progress:
# Get batch from queue or generate more
batch = self.get_batch()
while batch is None:
self.generate_mode()
batch = self.get_batch()
# GRPO update
with self.accelerator.accumulate(self.model):
loss = self.GRPO_step(batch)
# for param in self.model.parameters():
# custom_loss = loss + 0 * param.sum()
self.accelerator.backward(loss)
if self.max_grad_norm > 0 and self.accelerator.sync_gradients:
total_norm = self.accelerator.clip_grad_norm_(
self.model.parameters(), self.max_grad_norm
)
else:
total_norm = torch.norm(
torch.stack(
[
torch.norm(p.grad.detach(), 2)
for p in self.model.parameters()
if p.grad is not None
]
),
2,
)
self.accelerator.log(
{"grad_norm": total_norm.item()}, step=self.global_step
)
self.optimizer.step()
self.scheduler.step()
self.optimizer.zero_grad()
self.global_step += 1
# Log metrics
if self.is_main:
self.accelerator.log(
{
"loss": loss.item(),
"lr": self.scheduler.get_last_lr()[0],
# "avg_reward": batch["rewards"].mean().item(),
# "max_reward": batch["rewards"].max().item(),
# "min_reward": batch["rewards"].min().item(),
},
step=self.global_step,
)
progress.set_postfix(
loss=f"{loss.item():.4f}",
lr=f"{self.scheduler.get_last_lr()[0]:.8f}",
)
# Save checkpoint
if self.global_step % self.save_per_updates == 0:
self.save_checkpoint(self.global_step)
# Optional validation logic could be added here
# Save final checkpoint
self.save_checkpoint(self.global_step, last=True)
self.accelerator.end_training()