## Triton Inference Serving Best Practice for F5-TTS ### Quick Start Directly launch the service using docker compose. ```sh # TODO: support F5TTS_v1_Base MODEL=F5TTS_Base docker compose up ``` ### Build Image Build the docker image from scratch. ```sh docker build . -f Dockerfile.server -t soar97/triton-f5-tts:24.12 ``` ### Create Docker Container ```sh your_mount_dir=/mnt:/mnt docker run -it --name "f5-server" --gpus all --net host -v $your_mount_dir --shm-size=2g soar97/triton-f5-tts:24.12 ``` ### Export Models to TensorRT-LLM and Launch Server Inside docker container, we would follow the official guide of TensorRT-LLM to build qwen and whisper TensorRT-LLM engines. See [here](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/whisper). ```sh bash run.sh 0 4 F5TTS_Base ``` ### HTTP Client ```sh python3 client_http.py ``` ### Benchmark using Client-Server Mode ```sh num_task=2 python3 client_grpc.py --num-tasks $num_task --huggingface-dataset yuekai/seed_tts --split-name wenetspeech4tts ``` ### Benchmark using Offline TRT-LLM Mode ```sh batch_size=1 split_name=wenetspeech4tts backend_type=trt log_dir=./log_benchmark_batch_size_${batch_size}_${split_name}_${backend_type} rm -r $log_dir ln -s model_repo_f5_tts/f5_tts/1/f5_tts_trtllm.py ./ torchrun --nproc_per_node=1 \ benchmark.py --output-dir $log_dir \ --batch-size $batch_size \ --enable-warmup \ --split-name $split_name \ --model-path $F5_TTS_HF_DOWNLOAD_PATH/$model/model_1200000.pt \ --vocab-file $F5_TTS_HF_DOWNLOAD_PATH/$model/vocab.txt \ --vocoder-trt-engine-path $vocoder_trt_engine_path \ --backend-type $backend_type \ --tllm-model-dir $F5_TTS_TRT_LLM_ENGINE_PATH || exit 1 ``` ### Benchmark Results Decoding on a single L20 GPU, using 26 different prompt_audio & target_text pairs, 16 NFE. | Model | Concurrency | Avg Latency | RTF | Mode | |---------------------|----------------|-------------|--------|-----------------| | F5-TTS Base (Vocos) | 2 | 253 ms | 0.0394 | Client-Server | | F5-TTS Base (Vocos) | 1 (Batch_size) | - | 0.0402 | Offline TRT-LLM | | F5-TTS Base (Vocos) | 1 (Batch_size) | - | 0.1467 | Offline Pytorch | ### Credits 1. [F5-TTS-TRTLLM](https://github.com/Bigfishering/f5-tts-trtllm)