stage=$1 stop_stage=$2 model=$3 # F5TTS_Base if [ -z "$model" ]; then echo "Model is none, using default model F5TTS_Base" model=F5TTS_Base fi echo "Start stage: $stage, Stop stage: $stop_stage, Model: $model" export CUDA_VISIBLE_DEVICES=0 F5_TTS_HF_DOWNLOAD_PATH=./F5-TTS F5_TTS_TRT_LLM_CHECKPOINT_PATH=./trtllm_ckpt F5_TTS_TRT_LLM_ENGINE_PATH=./f5_trt_llm_engine vocoder_trt_engine_path=vocos_vocoder.plan model_repo=./model_repo if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then echo "Downloading f5 tts from huggingface" huggingface-cli download SWivid/F5-TTS --local-dir $F5_TTS_HF_DOWNLOAD_PATH fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then echo "Converting checkpoint" python3 ./scripts/convert_checkpoint.py \ --timm_ckpt "$F5_TTS_HF_DOWNLOAD_PATH/$model/model_1200000.pt" \ --output_dir "$F5_TTS_TRT_LLM_CHECKPOINT_PATH" --model_name $model python_package_path=/usr/local/lib/python3.12/dist-packages cp -r patch/* $python_package_path/tensorrt_llm/models trtllm-build --checkpoint_dir $F5_TTS_TRT_LLM_CHECKPOINT_PATH \ --max_batch_size 8 \ --output_dir $F5_TTS_TRT_LLM_ENGINE_PATH --remove_input_padding disable fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then echo "Exporting vocos vocoder" onnx_vocoder_path=vocos_vocoder.onnx python3 scripts/export_vocoder_to_onnx.py --vocoder vocos --output-path $onnx_vocoder_path bash scripts/export_vocos_trt.sh $onnx_vocoder_path $vocoder_trt_engine_path fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then echo "Building triton server" rm -r $model_repo cp -r ./model_repo_f5_tts $model_repo python3 scripts/fill_template.py -i $model_repo/f5_tts/config.pbtxt vocab:$F5_TTS_HF_DOWNLOAD_PATH/$model/vocab.txt,model:$F5_TTS_HF_DOWNLOAD_PATH/$model/model_1200000.pt,trtllm:$F5_TTS_TRT_LLM_ENGINE_PATH,vocoder:vocos cp $vocoder_trt_engine_path $model_repo/vocoder/1/vocoder.plan fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then echo "Starting triton server" tritonserver --model-repository=$model_repo fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then echo "Testing triton server" num_task=1 log_dir=./log_concurrent_tasks_${num_task} rm -r $log_dir python3 client_grpc.py --num-tasks $num_task --huggingface-dataset yuekai/seed_tts --split-name wenetspeech4tts --log-dir $log_dir fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then echo "Testing http client" audio=../../infer/examples/basic/basic_ref_en.wav reference_text="Some call me nature, others call me mother nature." target_text="I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring." python3 client_http.py --reference-audio $audio --reference-text "$reference_text" --target-text "$target_text" fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then echo "TRT-LLM: offline decoding benchmark test" batch_size=1 split_name=wenetspeech4tts backend_type=trt log_dir=./log_benchmark_batch_size_${batch_size}_${split_name}_${backend_type} rm -r $log_dir ln -s model_repo_f5_tts/f5_tts/1/f5_tts_trtllm.py ./ torchrun --nproc_per_node=1 \ benchmark.py --output-dir $log_dir \ --batch-size $batch_size \ --enable-warmup \ --split-name $split_name \ --model-path $F5_TTS_HF_DOWNLOAD_PATH/$model/model_1200000.pt \ --vocab-file $F5_TTS_HF_DOWNLOAD_PATH/$model/vocab.txt \ --vocoder-trt-engine-path $vocoder_trt_engine_path \ --backend-type $backend_type \ --tllm-model-dir $F5_TTS_TRT_LLM_ENGINE_PATH || exit 1 fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then echo "Native Pytorch: offline decoding benchmark test" pip install -r requirements-pytorch.txt batch_size=1 split_name=wenetspeech4tts backend_type=pytorch log_dir=./log_benchmark_batch_size_${batch_size}_${split_name}_${backend_type} rm -r $log_dir ln -s model_repo_f5_tts/f5_tts/1/f5_tts_trtllm.py ./ torchrun --nproc_per_node=1 \ benchmark.py --output-dir $log_dir \ --batch-size $batch_size \ --split-name $split_name \ --enable-warmup \ --model-path $F5_TTS_HF_DOWNLOAD_PATH/$model/model_1200000.pt \ --vocab-file $F5_TTS_HF_DOWNLOAD_PATH/$model/vocab.txt \ --backend-type $backend_type \ --tllm-model-dir $F5_TTS_TRT_LLM_ENGINE_PATH || exit 1 fi