# put in src/f5_tts/train/datasets/prepare_emilia_v2.py # prepares Emilia dataset with the new format w/ Emilia-YODAS import json import os from concurrent.futures import ProcessPoolExecutor from importlib.resources import files from pathlib import Path from datasets.arrow_writer import ArrowWriter from tqdm import tqdm from f5_tts.model.utils import repetition_found # Define filters for exclusion out_en = set() en_filters = ["ا", "い", "て"] def process_audio_directory(audio_dir): sub_result, durations, vocab_set = [], [], set() bad_case_en = 0 for file in audio_dir.iterdir(): if file.suffix == ".json": with open(file, "r") as f: obj = json.load(f) text = obj["text"] if any(f in text for f in en_filters) or repetition_found( text, length=4 ): bad_case_en += 1 continue duration = obj["duration"] audio_file = file.with_suffix(".mp3") if audio_file.exists(): sub_result.append( { "audio_path": str(audio_file), "text": text, "duration": duration, } ) durations.append(duration) vocab_set.update(list(text)) return sub_result, durations, vocab_set, bad_case_en def main(): assert tokenizer in ["pinyin", "char"] result, duration_list, text_vocab_set = [], [], set() total_bad_case_en = 0 executor = ProcessPoolExecutor(max_workers=max_workers) futures = [] dataset_path = Path(dataset_dir) for sub_dir in dataset_path.iterdir(): if sub_dir.is_dir(): futures.append(executor.submit(process_audio_directory, sub_dir)) for future in tqdm(futures, total=len(futures)): sub_result, durations, vocab_set, bad_case_en = future.result() result.extend(sub_result) duration_list.extend(durations) text_vocab_set.update(vocab_set) total_bad_case_en += bad_case_en executor.shutdown() if not os.path.exists(f"{save_dir}"): os.makedirs(f"{save_dir}") with ArrowWriter(path=f"{save_dir}/raw.arrow") as writer: for line in tqdm(result, desc="Writing to raw.arrow ..."): writer.write(line) with open(f"{save_dir}/duration.json", "w", encoding="utf-8") as f: json.dump({"duration": duration_list}, f, ensure_ascii=False) with open(f"{save_dir}/vocab.txt", "w") as f: for vocab in sorted(text_vocab_set): f.write(vocab + "\n") print(f"For {dataset_name}, sample count: {len(result)}") print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}") print(f"For {dataset_name}, total {sum(duration_list) / 3600:.2f} hours") print(f"Bad en transcription case: {total_bad_case_en}\n") if __name__ == "__main__": max_workers = 32 tokenizer = "char" dataset_dir = "/home/ubuntu/emilia-dataset/Emilia-YODAS/EN" dataset_name = f"Emilia_EN_{tokenizer}" # save_dir = os.path.expanduser(f"~/F5-TTS/data/{dataset_name}") save_dir = str(files("f5_tts").joinpath("../../")) + f"/data/{dataset_name}" print(f"Prepare for {dataset_name}, will save to {save_dir}\n") main()