# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """HIFI-GAN""" import typing as tp import time import numpy as np from scipy.signal import get_window import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import Conv1d from torch.nn import ConvTranspose1d from torch.nn.utils import remove_weight_norm from torch.nn.utils import weight_norm from torch.distributions.uniform import Uniform from cosyvoice.transformer.activation import Snake from cosyvoice.utils.common import get_padding from cosyvoice.utils.common import init_weights """hifigan based generator implementation. This code is modified from https://github.com/jik876/hifi-gan ,https://github.com/kan-bayashi/ParallelWaveGAN and https://github.com/NVIDIA/BigVGAN """ class ResBlock(torch.nn.Module): """Residual block module in HiFiGAN/BigVGAN.""" def __init__( self, channels: int = 512, kernel_size: int = 3, dilations: tp.List[int] = [1, 3, 5], ): super(ResBlock, self).__init__() self.convs1 = nn.ModuleList() self.convs2 = nn.ModuleList() for dilation in dilations: self.convs1.append( weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation, padding=get_padding(kernel_size, dilation), ) ) ) self.convs2.append( weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ) ) self.convs1.apply(init_weights) self.convs2.apply(init_weights) self.activations1 = nn.ModuleList( [Snake(channels, alpha_logscale=False) for _ in range(len(self.convs1))] ) self.activations2 = nn.ModuleList( [Snake(channels, alpha_logscale=False) for _ in range(len(self.convs2))] ) def forward(self, x: torch.Tensor) -> torch.Tensor: for idx in range(len(self.convs1)): xt = self.activations1[idx](x) xt = self.convs1[idx](xt) xt = self.activations2[idx](xt) xt = self.convs2[idx](xt) x = xt + x return x def remove_weight_norm(self): for idx in range(len(self.convs1)): remove_weight_norm(self.convs1[idx]) remove_weight_norm(self.convs2[idx]) class SineGen(torch.nn.Module): """Definition of sine generator SineGen(samp_rate, harmonic_num = 0, sine_amp = 0.1, noise_std = 0.003, voiced_threshold = 0, flag_for_pulse=False) samp_rate: sampling rate in Hz harmonic_num: number of harmonic overtones (default 0) sine_amp: amplitude of sine-wavefrom (default 0.1) noise_std: std of Gaussian noise (default 0.003) voiced_thoreshold: F0 threshold for U/V classification (default 0) flag_for_pulse: this SinGen is used inside PulseGen (default False) Note: when flag_for_pulse is True, the first time step of a voiced segment is always sin(np.pi) or cos(0) """ def __init__( self, samp_rate, harmonic_num=0, sine_amp=0.1, noise_std=0.003, voiced_threshold=0, ): super(SineGen, self).__init__() self.sine_amp = sine_amp self.noise_std = noise_std self.harmonic_num = harmonic_num self.sampling_rate = samp_rate self.voiced_threshold = voiced_threshold def _f02uv(self, f0): # generate uv signal uv = (f0 > self.voiced_threshold).type(torch.float32) return uv @torch.no_grad() def forward(self, f0): """ :param f0: [B, 1, sample_len], Hz :return: [B, 1, sample_len] """ F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to( f0.device ) for i in range(self.harmonic_num + 1): F_mat[:, i : i + 1, :] = f0 * (i + 1) / self.sampling_rate theta_mat = 2 * np.pi * (torch.cumsum(F_mat, dim=-1) % 1) u_dist = Uniform(low=-np.pi, high=np.pi) phase_vec = u_dist.sample( sample_shape=(f0.size(0), self.harmonic_num + 1, 1) ).to(F_mat.device) phase_vec[:, 0, :] = 0 # generate sine waveforms sine_waves = self.sine_amp * torch.sin(theta_mat + phase_vec) # generate uv signal uv = self._f02uv(f0) # noise: for unvoiced should be similar to sine_amp # std = self.sine_amp/3 -> max value ~ self.sine_amp # . for voiced regions is self.noise_std noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 noise = noise_amp * torch.randn_like(sine_waves) # first: set the unvoiced part to 0 by uv # then: additive noise sine_waves = sine_waves * uv + noise return sine_waves, uv, noise class SourceModuleHnNSF(torch.nn.Module): """SourceModule for hn-nsf SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, add_noise_std=0.003, voiced_threshod=0) sampling_rate: sampling_rate in Hz harmonic_num: number of harmonic above F0 (default: 0) sine_amp: amplitude of sine source signal (default: 0.1) add_noise_std: std of additive Gaussian noise (default: 0.003) note that amplitude of noise in unvoiced is decided by sine_amp voiced_threshold: threhold to set U/V given F0 (default: 0) Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) F0_sampled (batchsize, length, 1) Sine_source (batchsize, length, 1) noise_source (batchsize, length 1) uv (batchsize, length, 1) """ def __init__( self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1, add_noise_std=0.003, voiced_threshod=0, ): super(SourceModuleHnNSF, self).__init__() self.sine_amp = sine_amp self.noise_std = add_noise_std # to produce sine waveforms self.l_sin_gen = SineGen( sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod ) # to merge source harmonics into a single excitation self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) self.l_tanh = torch.nn.Tanh() def forward(self, x): """ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) F0_sampled (batchsize, length, 1) Sine_source (batchsize, length, 1) noise_source (batchsize, length 1) """ # source for harmonic branch with torch.no_grad(): sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2)) sine_wavs = sine_wavs.transpose(1, 2) uv = uv.transpose(1, 2) sine_merge = self.l_tanh(self.l_linear(sine_wavs)) # source for noise branch, in the same shape as uv noise = torch.randn_like(uv) * self.sine_amp / 3 return sine_merge, noise, uv class HiFTGenerator(nn.Module): """ HiFTNet Generator: Neural Source Filter + ISTFTNet https://arxiv.org/abs/2309.09493 """ def __init__( self, in_channels: int = 80, base_channels: int = 512, nb_harmonics: int = 8, sampling_rate: int = 22050, nsf_alpha: float = 0.1, nsf_sigma: float = 0.003, nsf_voiced_threshold: float = 10, upsample_rates: tp.List[int] = [8, 8], upsample_kernel_sizes: tp.List[int] = [16, 16], istft_params: tp.Dict[str, int] = {"n_fft": 16, "hop_len": 4}, resblock_kernel_sizes: tp.List[int] = [3, 7, 11], resblock_dilation_sizes: tp.List[tp.List[int]] = [ [1, 3, 5], [1, 3, 5], [1, 3, 5], ], source_resblock_kernel_sizes: tp.List[int] = [7, 11], source_resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5]], lrelu_slope: float = 0.1, audio_limit: float = 0.99, f0_predictor: torch.nn.Module = None, ): super(HiFTGenerator, self).__init__() self.out_channels = 1 self.nb_harmonics = nb_harmonics self.sampling_rate = sampling_rate self.istft_params = istft_params self.lrelu_slope = lrelu_slope self.audio_limit = audio_limit self.num_kernels = len(resblock_kernel_sizes) self.num_upsamples = len(upsample_rates) self.upsample_rates = upsample_rates self.m_source = SourceModuleHnNSF( sampling_rate=sampling_rate, upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"], harmonic_num=nb_harmonics, sine_amp=nsf_alpha, add_noise_std=nsf_sigma, voiced_threshod=nsf_voiced_threshold, ) self.f0_upsamp = torch.nn.Upsample( scale_factor=np.prod(upsample_rates) * istft_params["hop_len"] ) self.conv_pre = weight_norm(Conv1d(in_channels, base_channels, 7, 1, padding=3)) # Up self.ups = nn.ModuleList() for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): self.ups.append( weight_norm( ConvTranspose1d( base_channels // (2**i), base_channels // (2 ** (i + 1)), k, u, padding=(k - u) // 2, ) ) ) # Down self.source_downs = nn.ModuleList() self.source_resblocks = nn.ModuleList() downsample_rates = [1] + upsample_rates[::-1][:-1] downsample_cum_rates = np.cumprod(downsample_rates) for i, (u, k, d) in enumerate( zip( downsample_cum_rates[::-1], source_resblock_kernel_sizes, source_resblock_dilation_sizes, ) ): if u == 1: self.source_downs.append( Conv1d( istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1 ) ) else: self.source_downs.append( Conv1d( istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2), ) ) self.source_resblocks.append( ResBlock(base_channels // (2 ** (i + 1)), k, d) ) self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = base_channels // (2 ** (i + 1)) for _, (k, d) in enumerate( zip(resblock_kernel_sizes, resblock_dilation_sizes) ): self.resblocks.append(ResBlock(ch, k, d)) self.conv_post = weight_norm( Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3) ) self.ups.apply(init_weights) self.conv_post.apply(init_weights) self.reflection_pad = nn.ReflectionPad1d((1, 0)) self.stft_window = torch.from_numpy( get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32) ).cuda() self.f0_predictor = f0_predictor self.inference_buffers = {} self.inference_graphs = {} def _f02source(self, f0: torch.Tensor) -> torch.Tensor: f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t har_source, _, _ = self.m_source(f0) return har_source.transpose(1, 2) def _stft(self, x): spec = torch.stft( x, self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window, return_complex=True, ) spec = torch.view_as_real(spec) # [B, F, TT, 2] return spec[..., 0], spec[..., 1] def _istft(self, magnitude, phase): magnitude = torch.clip(magnitude, max=1e2) real = magnitude * torch.cos(phase) img = magnitude * torch.sin(phase) inverse_transform = torch.istft( torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window, ) return inverse_transform def forward( self, x: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0) ) -> torch.Tensor: f0 = self.f0_predictor(x) s = self._f02source(f0) # use cache_source to avoid glitch if cache_source.shape[2] != 0: s[:, :, : cache_source.shape[2]] = cache_source s_stft_real, s_stft_imag = self._stft(s.squeeze(1)) s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1) x = self.conv_pre(x) for i in range(self.num_upsamples): x = F.leaky_relu(x, self.lrelu_slope) x = self.ups[i](x) if i == self.num_upsamples - 1: x = self.reflection_pad(x) # fusion si = self.source_downs[i](s_stft) si = self.source_resblocks[i](si) x = x + si xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i * self.num_kernels + j](x) else: xs += self.resblocks[i * self.num_kernels + j](x) x = xs / self.num_kernels x = F.leaky_relu(x) x = self.conv_post(x) magnitude = torch.exp(x[:, : self.istft_params["n_fft"] // 2 + 1, :]) phase = torch.sin( x[:, self.istft_params["n_fft"] // 2 + 1 :, :] ) # actually, sin is redundancy x = self._istft(magnitude, phase) x = torch.clamp(x, -self.audio_limit, self.audio_limit) return x, s def remove_weight_norm(self): print("Removing weight norm...") for l in self.ups: remove_weight_norm(l) for l in self.resblocks: l.remove_weight_norm() remove_weight_norm(self.conv_pre) remove_weight_norm(self.conv_post) self.source_module.remove_weight_norm() for l in self.source_downs: remove_weight_norm(l) for l in self.source_resblocks: l.remove_weight_norm() @torch.inference_mode() def _inference_impl(self, mel: torch.Tensor, s_stft: torch.Tensor) -> torch.Tensor: x = self.conv_pre(mel) for i in range(self.num_upsamples): x = F.leaky_relu(x, self.lrelu_slope) x = self.ups[i](x) if i == self.num_upsamples - 1: x = self.reflection_pad(x) # fusion si = self.source_downs[i](s_stft) si = self.source_resblocks[i](si) x = x + si xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i * self.num_kernels + j](x) else: xs += self.resblocks[i * self.num_kernels + j](x) x = xs / self.num_kernels x = F.leaky_relu(x) x = self.conv_post(x) magnitude = torch.exp(x[:, : self.istft_params["n_fft"] // 2 + 1, :]) phase = torch.sin( x[:, self.istft_params["n_fft"] // 2 + 1 :, :] ) # actually, sin is redundancy # print(f"mel: {mel.shape}, magnitude: {magnitude.shape}, phase: {phase.shape}") return magnitude, phase @torch.inference_mode() def inference( self, mel: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0) ) -> torch.Tensor: curr_seq_len = mel.shape[2] f0 = self.f0_predictor(mel) s = self._f02source(f0) s_stft_real, s_stft_imag = self._stft(s.squeeze(1)) s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1) target_len = None for seq_len in sorted(self.inference_buffers.keys()): if curr_seq_len <= seq_len: target_len = seq_len break if target_len is not None: buffer = self.inference_buffers[target_len] if curr_seq_len < target_len: padded_mel = torch.zeros_like(buffer["mel"]) padded_mel[:, :, :curr_seq_len] = mel buffer["mel"].copy_(padded_mel) padded_s_stft = torch.zeros_like(buffer["s_stft"]) cur_s_stft_len = s_stft.shape[2] padded_s_stft[:, :, :cur_s_stft_len] = s_stft buffer["s_stft"].copy_(padded_s_stft) else: buffer["mel"].copy_(mel) buffer["s_stft"].copy_(s_stft) cur_s_stft_len = s_stft.shape[2] self.inference_graphs[target_len].replay() magnitude, phase = ( buffer["magnitude"][:, :, :cur_s_stft_len], buffer["phase"][:, :, :cur_s_stft_len], ) else: magnitude, phase = self._inference_impl(mel=mel, s_stft=s_stft) x = self._istft(magnitude, phase) x = torch.clamp(x, -self.audio_limit, self.audio_limit) return x, s @torch.inference_mode() def capture_inference(self, seq_len_to_capture=[64, 128, 256, 512, 1024]): start_time = time.time() print( f"capture inference for HiFTGenerator with seq_len_to_capture: {seq_len_to_capture}" ) for seq_len in seq_len_to_capture: mel = torch.randn( 1, 80, seq_len, device=torch.device("cuda"), dtype=torch.float32 ) f0 = self.f0_predictor(mel) s = self._f02source(f0) s_stft_real, s_stft_imag = self._stft(s.squeeze(1)) s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1) magnitude, phase = self._inference_impl(mel=mel, s_stft=s_stft) torch.cuda.synchronize() g = torch.cuda.CUDAGraph() with torch.cuda.graph(g): magnitude, phase = self._inference_impl(mel=mel, s_stft=s_stft) inference_buffer = { "mel": mel, "s_stft": s_stft, "magnitude": magnitude, "phase": phase, } self.inference_buffers[seq_len] = inference_buffer self.inference_graphs[seq_len] = g end_time = time.time() print( f"capture inference for HiFTGenerator with seq_len_to_capture: {seq_len_to_capture} takes {end_time - start_time} seconds" )