from __future__ import annotations import os import random from collections import defaultdict from importlib.resources import files import jieba import torch from pypinyin import Style, lazy_pinyin from torch.nn.utils.rnn import pad_sequence # seed everything def seed_everything(seed=0): random.seed(seed) os.environ["PYTHONHASHSEED"] = str(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # helpers def exists(v): return v is not None def default(v, d): return v if exists(v) else d # tensor helpers def lens_to_mask( t: int["b"], length: int | None = None ) -> bool["b n"]: # noqa: F722 F821 if not exists(length): length = t.amax() seq = torch.arange(length, device=t.device) return seq[None, :] < t[:, None] def mask_from_start_end_indices( seq_len: int["b"], start: int["b"], end: int["b"] ): # noqa: F722 F821 max_seq_len = seq_len.max().item() seq = torch.arange(max_seq_len, device=start.device).long() start_mask = seq[None, :] >= start[:, None] end_mask = seq[None, :] < end[:, None] return start_mask & end_mask def mask_from_frac_lengths( seq_len: int["b"], frac_lengths: float["b"] ): # noqa: F722 F821 lengths = (frac_lengths * seq_len).long() max_start = seq_len - lengths rand = torch.rand_like(frac_lengths) start = (max_start * rand).long().clamp(min=0) end = start + lengths return mask_from_start_end_indices(seq_len, start, end) def maybe_masked_mean( t: float["b n d"], mask: bool["b n"] = None ) -> float["b d"]: # noqa: F722 if not exists(mask): return t.mean(dim=1) t = torch.where(mask[:, :, None], t, torch.tensor(0.0, device=t.device)) num = t.sum(dim=1) den = mask.float().sum(dim=1) return num / den.clamp(min=1.0) # simple utf-8 tokenizer, since paper went character based def list_str_to_tensor(text: list[str], padding_value=-1) -> int["b nt"]: # noqa: F722 list_tensors = [torch.tensor([*bytes(t, "UTF-8")]) for t in text] # ByT5 style text = pad_sequence(list_tensors, padding_value=padding_value, batch_first=True) return text # char tokenizer, based on custom dataset's extracted .txt file def list_str_to_idx( text: list[str] | list[list[str]], vocab_char_map: dict[str, int], # {char: idx} padding_value=-1, ) -> int["b nt"]: # noqa: F722 list_idx_tensors = [ torch.tensor([vocab_char_map.get(c, 0) for c in t]) for t in text ] # pinyin or char style text = pad_sequence(list_idx_tensors, padding_value=padding_value, batch_first=True) return text # Get tokenizer def get_tokenizer(dataset_name, tokenizer: str = "pinyin"): """ tokenizer - "pinyin" do g2p for only chinese characters, need .txt vocab_file - "char" for char-wise tokenizer, need .txt vocab_file - "byte" for utf-8 tokenizer - "custom" if you're directly passing in a path to the vocab.txt you want to use vocab_size - if use "pinyin", all available pinyin types, common alphabets (also those with accent) and symbols - if use "char", derived from unfiltered character & symbol counts of custom dataset - if use "byte", set to 256 (unicode byte range) """ if tokenizer in ["pinyin", "char"]: tokenizer_path = os.path.join( files("f5_tts").joinpath("../data"), f"{dataset_name}_{tokenizer}/vocab.txt" ) with open(tokenizer_path, "r", encoding="utf-8") as f: vocab_char_map = {} for i, char in enumerate(f): vocab_char_map[char[:-1]] = i vocab_size = len(vocab_char_map) assert ( vocab_char_map[" "] == 0 ), "make sure space is of idx 0 in vocab.txt, cuz 0 is used for unknown char" elif tokenizer == "byte": vocab_char_map = None vocab_size = 256 elif tokenizer == "custom": with open(dataset_name, "r", encoding="utf-8") as f: vocab_char_map = {} for i, char in enumerate(f): vocab_char_map[char[:-1]] = i vocab_size = len(vocab_char_map) return vocab_char_map, vocab_size # convert char to pinyin jieba.initialize() print("Word segmentation module jieba initialized.\n") def convert_char_to_pinyin(text_list, polyphone=True): final_text_list = [] custom_trans = str.maketrans( {";": ",", "“": '"', "”": '"', "‘": "'", "’": "'"} ) # add custom trans here, to address oov def is_chinese(c): return "\u3100" <= c <= "\u9fff" # common chinese characters for text in text_list: char_list = [] text = text.translate(custom_trans) for seg in jieba.cut(text): seg_byte_len = len(bytes(seg, "UTF-8")) if seg_byte_len == len(seg): # if pure alphabets and symbols if char_list and seg_byte_len > 1 and char_list[-1] not in " :'\"": char_list.append(" ") char_list.extend(seg) elif polyphone and seg_byte_len == 3 * len( seg ): # if pure east asian characters seg_ = lazy_pinyin(seg, style=Style.TONE3, tone_sandhi=True) for i, c in enumerate(seg): if is_chinese(c): char_list.append(" ") char_list.append(seg_[i]) else: # if mixed characters, alphabets and symbols for c in seg: if ord(c) < 256: char_list.extend(c) elif is_chinese(c): char_list.append(" ") char_list.extend( lazy_pinyin(c, style=Style.TONE3, tone_sandhi=True) ) else: char_list.append(c) final_text_list.append(char_list) return final_text_list # filter func for dirty data with many repetitions def repetition_found(text, length=2, tolerance=10): pattern_count = defaultdict(int) for i in range(len(text) - length + 1): pattern = text[i : i + length] pattern_count[pattern] += 1 for pattern, count in pattern_count.items(): if count > tolerance: return True return False def load_checkpoint(model, ckpt_path, device, use_ema=True): if device == "cuda": model = model.half() ckpt_type = ckpt_path.split(".")[-1] if ckpt_type == "safetensors": from safetensors.torch import load_file checkpoint = load_file(ckpt_path) else: checkpoint = torch.load(ckpt_path, weights_only=True) if use_ema: if ckpt_type == "safetensors": checkpoint = {"ema_model_state_dict": checkpoint} checkpoint["model_state_dict"] = { k.replace("ema_model.", ""): v for k, v in checkpoint["ema_model_state_dict"].items() if k not in ["initted", "step"] } model.load_state_dict(checkpoint["model_state_dict"], strict=False) else: if ckpt_type == "safetensors": checkpoint = {"model_state_dict": checkpoint} model.load_state_dict(checkpoint["model_state_dict"], strict=False) return model.to(device) def sample_consecutive_steps(float_list): idx = torch.randint(0, len(float_list), size=(1,)) next_idx = idx - 1 if next_idx < 0: next_idx = 0 else: next_idx = idx - 1 return float(float_list[idx]), float(float_list[next_idx]) def sample_from_list(float_list, N): # Convert list to PyTorch tensor float_tensor = torch.tensor(float_list) list_length = len(float_list) if N <= list_length: # Generate a random permutation of indices for sampling without replacement random_indices = torch.randperm(list_length)[:N] random_samples = float_tensor[random_indices] else: # Generate random indices with replacement random_indices = torch.randint(list_length, (N,)) random_samples = float_tensor[random_indices] return random_samples