# Copyright 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import argparse import numpy as np import requests import soundfile as sf def get_args(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--server-url", type=str, default="localhost:8000", help="Address of the server", ) parser.add_argument( "--reference-audio", type=str, default="../../infer/examples/basic/basic_ref_en.wav", help="Path to a single audio file. It can't be specified at the same time with --manifest-dir", ) parser.add_argument( "--reference-text", type=str, default="Some call me nature, others call me mother nature.", help="", ) parser.add_argument( "--target-text", type=str, default="I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring.", help="", ) parser.add_argument( "--model-name", type=str, default="f5_tts", choices=["f5_tts", "spark_tts"], help="triton model_repo module name to request", ) parser.add_argument( "--output-audio", type=str, default="output.wav", help="Path to save the output audio", ) return parser.parse_args() def prepare_request( samples, reference_text, target_text, sample_rate=24000, audio_save_dir: str = "./", ): assert len(samples.shape) == 1, "samples should be 1D" lengths = np.array([[len(samples)]], dtype=np.int32) samples = samples.reshape(1, -1).astype(np.float32) data = { "inputs": [ { "name": "reference_wav", "shape": samples.shape, "datatype": "FP32", "data": samples.tolist(), }, { "name": "reference_wav_len", "shape": lengths.shape, "datatype": "INT32", "data": lengths.tolist(), }, { "name": "reference_text", "shape": [1, 1], "datatype": "BYTES", "data": [reference_text], }, { "name": "target_text", "shape": [1, 1], "datatype": "BYTES", "data": [target_text], }, ] } return data def load_audio(wav_path, target_sample_rate=24000): assert target_sample_rate == 24000, "hard coding in server" if isinstance(wav_path, dict): samples = wav_path["array"] sample_rate = wav_path["sampling_rate"] else: samples, sample_rate = sf.read(wav_path) if sample_rate != target_sample_rate: from scipy.signal import resample num_samples = int(len(samples) * (target_sample_rate / sample_rate)) samples = resample(samples, num_samples) return samples, target_sample_rate if __name__ == "__main__": args = get_args() server_url = args.server_url if not server_url.startswith(("http://", "https://")): server_url = f"http://{server_url}" url = f"{server_url}/v2/models/{args.model_name}/infer" samples, sr = load_audio(args.reference_audio) assert sr == 24000, "sample rate hardcoded in server" samples = np.array(samples, dtype=np.float32) data = prepare_request(samples, args.reference_text, args.target_text) rsp = requests.post( url, headers={"Content-Type": "application/json"}, json=data, verify=False, params={"request_id": "0"}, ) result = rsp.json() audio = result["outputs"][0]["data"] audio = np.array(audio, dtype=np.float32) sf.write(args.output_audio, audio, 24000, "PCM_16")