File size: 9,311 Bytes
9844377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cd9764
 
 
 
 
 
 
9844377
5cd9764
9844377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import streamlit as st
import os
import pathlib
import process_miner as pm

st.session_state.update(st.session_state)

if 'is_fuzzy_generated' not in st.session_state:
    st.session_state.is_fuzzy_generated = False

st.set_page_config(page_title='Fuzzy Miner', page_icon=':chart_with_upwards_trend:')
st.title('Fuzzy Miner ⛏️')
st.sidebar.title("Menu")
selected_section = st.sidebar.selectbox("Select:", ["Import", "Process Map"], key='fuzzy_menu',
                                        label_visibility='collapsed')
if selected_section == "Import":

    uploaded_file = st.file_uploader("Import a logs file .XES, .CSV")

    def upload():
        if uploaded_file is None:
            st.warning('Upload a file first!', icon="⚠️")
        else:
            data = uploaded_file.getvalue()
            parent_path = pathlib.Path(__file__).parent.parent.resolve()
            save_path = os.path.join(parent_path, "data")
            complete_name = os.path.join(save_path, uploaded_file.name)
            destination_file = open(complete_name, "wb")
            destination_file.write(data)
            destination_file.close()

            log = pm.read_log(os.path.join("webapp/data", uploaded_file.name))
            param = [[fs_include, fs_invert, frequency_significance],
                     [rs_include, rs_invert, routing_significance],
                     [bfs_include, bfs_invert, binary_frequency_significance],
                     [ds_include, ds_invert, distance_significance],
                     [pc_include, pc_invert, proximity_correlation],
                     [ec_include, ec_invert, endpoint_correlation],
                     [oc_include, oc_invert, originator_correlation],
                     [dtc_include, dtc_invert, data_type_correlation],
                     [dvc_include, dvc_invert, data_value_correlation]]
            with st.spinner(text="In progress..."):
                st.session_state.fuzzy_obj = pm.discover_fuzzy_miner(log, param, attenuation, max_distance,
                                                                     num_of_echelons)
            st.success('Process map generated successfully!', icon="🤖")
            st.session_state.is_fuzzy_generated = True
            st.session_state.fuzzy_menu = "Process Map"

    expander = st.expander("Fuzzy Configuration", expanded=False)
    with expander:
        st.header("Metrics")
        st.subheader("Unary Metrics")
        unary1 = st.columns(2)
        with unary1[0]:
            fs_include = st.checkbox('Include', key=1, value=True)
        with unary1[1]:
            fs_invert = st.checkbox('Invert', key=2)
        frequency_significance = st.slider('Frequency Significance', 0.000, 1.000, 1.000, step=0.001, format="%f")
        unary2 = st.columns(2)
        with unary2[0]:
            rs_include = st.checkbox('Include', key=3, value=True)
        with unary2[1]:
            rs_invert = st.checkbox('Invert', key=4)
        routing_significance = st.slider('Routing Significance', 0.000, 1.000, 1.000, step=0.001, format="%f")

        st.subheader("Binary Significance")
        unary3 = st.columns(2)
        with unary3[0]:
            bfs_include = st.checkbox('Include', key=5, value=True)
        with unary3[1]:
            bfs_invert = st.checkbox('Invert', key=6)
        binary_frequency_significance = st.slider('Binary Frequency Significance', 0.000, 1.000, 1.000, step=0.001,
                                                  format="%f")
        unary4 = st.columns(2)
        with unary4[0]:
            ds_include = st.checkbox('Include', key=7, value=True)
        with unary4[1]:
            ds_invert = st.checkbox('Invert', key=8)
        distance_significance = st.slider('Distance Significance', 0.000, 1.000, 1.000, step=0.001, format="%f")

        st.subheader("Binary Correlation")
        unary5 = st.columns(2)
        with unary5[0]:
            pc_include = st.checkbox('Include', key=9, value=True)
        with unary5[1]:
            pc_invert = st.checkbox('Invert', key=10)
        proximity_correlation = st.slider('Proximity Correlation', 0.000, 1.000, 1.000, step=0.001, format="%f")
        unary6 = st.columns(2)
        with unary6[0]:
            ec_include = st.checkbox('Include', key=11, value=True)
        with unary6[1]:
            ec_invert = st.checkbox('Invert', key=12)
        endpoint_correlation = st.slider('Endpoint Correlation', 0.000, 1.000, 1.000, step=0.001, format="%f")
        unary7 = st.columns(2)
        with unary7[0]:
            oc_include = st.checkbox('Include', key=13, value=True)
        with unary7[1]:
            oc_invert = st.checkbox('Invert', key=14)
        originator_correlation = st.slider('Originator Correlation', 0.000, 1.000, 1.000, step=0.001, format="%f")
        unary8 = st.columns(2)
        with unary8[0]:
            dtc_include = st.checkbox('Include', key=15, value=True)
        with unary8[1]:
            dtc_invert = st.checkbox('Invert', key=16)
        data_type_correlation = st.slider('Data Type Correlation', 0.000, 1.000, 1.000, step=0.001, format="%f")
        unary9 = st.columns(2)
        with unary9[0]:
            dvc_include = st.checkbox('Include', key=17, value=True)
        with unary9[1]:
            dvc_invert = st.checkbox('Invert', key=18)
        data_value_correlation = st.slider('Data Value Correlation', 0.000, 1.000, 1.000, step=0.001, format="%f")
        # else:
        st.header("Attenuation")
        max_distance = st.slider('Maximal event distance', 1, 20, 5)
        num_of_echelons = max_distance
        attenuation = st.radio("Select Attenuation", ["N(th) root with radical", "Linear Attenuation"],
                               horizontal=True)
        if attenuation == "N(th) root with radical":
            num_of_echelons = st.slider('N(th) root', 1.00, 4.00, 2.70, label_visibility='collapsed')

    st.button("Generate process map", on_click=upload)

else:
    path = pathlib.Path(__file__).parent.parent.resolve()
    try:

        f = open(os.path.join(path, "media/graphs/fuzzy.gv"), "r")
        lines = f.readlines()
        svg = ''.join(lines)
        st.graphviz_chart(svg)

        file = open(os.path.join(path, "media/graphs/fuzzy.gv.svg"), "r")
        btn = st.download_button(
            label="Download .svg",
            data=file,
            file_name="fuzzy.svg",
            mime="image/svg+xml"
        )

        if st.session_state.is_fuzzy_generated:
            def update_node():
                pm.update_node_filter(st.session_state.fuzzy_obj, st.session_state.sign_cutoff_slider_f)

            node_expander = st.sidebar.expander("Node", expanded=False)
            node_expander.slider('Significance CutOff', 0.000, 1.000, 0.000, step=0.001, format="%f",
                                 on_change=update_node, key='sign_cutoff_slider_f')

            def update_edge():
                pm.update_edge_filter(st.session_state.fuzzy_obj,
                                      int(st.session_state.edge_transform_f == 'Fuzzy Edges'),
                                      st.session_state.sc_ratio_slider_f, st.session_state.preserve_edge_slider_f,
                                      st.session_state.interpret_abs_f, st.session_state.ignore_self_loops_f)

            edge_expander = st.sidebar.expander("Edge", expanded=False)
            edge_expander.radio("edge_transform", ["Fuzzy Edges", "Best Edges"], horizontal=True, on_change=update_edge,
                                label_visibility='collapsed', key='edge_transform_f')
            if st.session_state.edge_transform_f == 'Fuzzy Edges':
                edge_expander.checkbox('Interpret Absolute', value=False, on_change=update_edge, key='interpret_abs_f')
                edge_expander.slider('Preserve Edge', 0.001, 1.000, 0.200, step=0.001, format="%f",
                                     on_change=update_edge, key='preserve_edge_slider_f')
                edge_expander.slider('S/C Ratio', 0.000, 1.000, 0.750, step=0.001, format="%f", on_change=update_edge,
                                     key='sc_ratio_slider_f')
            edge_expander.checkbox('Ignore Self-Loops', value=True, on_change=update_edge, key='ignore_self_loops_f')

            def update_concurrency():
                pm.update_concurrency_filter(st.session_state.fuzzy_obj, st.session_state.filter_concurrency_f,
                                             st.session_state.preserve_slider_f,
                                             st.session_state.offset_slider_f)

            concur_expander = st.sidebar.expander("Concurrency", expanded=False)
            concur_expander.checkbox('Filter Concurrency', value=True, on_change=update_concurrency,
                                     key='filter_concurrency_f')
            if st.session_state.filter_concurrency_f:
                concur_expander.slider('Preserve', 0.000, 1.000, 0.600, step=0.001, format="%f",
                                       on_change=update_concurrency, key='preserve_slider_f')
                concur_expander.slider('Balance', 0.000, 1.000, 0.700, step=0.001, format="%f",
                                       on_change=update_concurrency, key='offset_slider_f')
    except:
        st.warning('First generate the process model!', icon="⚠️")