File size: 14,915 Bytes
9844377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cd9764
 
 
 
9844377
5cd9764
 
 
 
 
9844377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cd9764
 
 
 
 
 
 
 
9844377
5cd9764
9844377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cd9764
 
 
 
 
 
 
 
9844377
5cd9764
9844377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import os
import pathlib
import streamlit as st
import pandas as pd
import numpy as np
import process_miner as pm

st.session_state.update(st.session_state)

# Defining the default archetypes used for analyzing transitions in standard process events,
# the ones present in the archetypes file of the stigmergic perceptron.
default_archetypes = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                               [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
                               [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                               [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1],
                               [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
default_labels = ['Dead Transition', 'Cold Transition', 'Falling Transition', 'Rising Transition',
                  'Hot Transition']

if "columns" not in st.session_state:
    st.session_state.columns = default_labels

if "data" not in st.session_state:
    st.session_state.data = default_archetypes

# Generate the archetype dataframe
if "chart_data" not in st.session_state:
    st.session_state.chart_data = pd.DataFrame(
        st.session_state.data.transpose(),
        columns=st.session_state.columns)

# Session state to prevent the generation of a new archetype if it has already been generated by the user.
if "disabled_generation" not in st.session_state:
    st.session_state.disabled_generation = False

if "radio_index" not in st.session_state:
    st.session_state.radio_index = 0

if "export_timeseries" not in st.session_state:
    st.session_state.export_timeseries = True


def init_archetypes():
    """
    Function that reinitializes the archetypes selection menu when a user loads a new dataset.
    """
    st.session_state.columns = default_labels
    st.session_state.data = default_archetypes
    st.session_state.chart_data = pd.DataFrame(
        st.session_state.data.transpose(),
        columns=st.session_state.columns)
    st.session_state.disabled_generation = False
    st.session_state.export_timeseries = True


# Set up the web page and the selection box to enable the user to initialize a new dataset import or explore
# the currently generated dataset.
st.set_page_config(page_title='Stigmergic Miner', page_icon=':chart_with_upwards_trend:')
st.title('Stigmergic Miner ⛏️')
st.sidebar.title("Menu")
selected_section = st.sidebar.selectbox("Select:", ["Import", "Stigmergic Map", "Archetypal Map"], key='stigmergic_menu',
                                        label_visibility='collapsed')

# Initialize the page with the 'import' option selected by default.
if selected_section == "Import":
    st.session_state.uploaded_file = st.file_uploader("Import a logs file .XES, .CSV", on_change=init_archetypes)

    def generate_process_map():
        """
        Function that generates the process map when a new dataset is loaded into the application.
        """
        if st.session_state.uploaded_file is None:
            st.warning('Upload a file first!', icon="⚠️")
        else:
            parent_path = pathlib.Path(__file__).parent.parent.resolve()
            save_path = os.path.join(parent_path, "data")
            complete_name = os.path.join(save_path, st.session_state.uploaded_file.name)
            destination_file = open(complete_name, "wb")

            loaded_data = st.session_state.uploaded_file.getvalue()
            destination_file.write(loaded_data)
            destination_file.close()

            log = pm.read_log(os.path.join("webapp/data", st.session_state.uploaded_file.name))
            params = [significance_norm, evaporation_rate, st.session_state.export_timeseries]

            with st.spinner(text="In progress..."):
                st.session_state.stigmergic_obj = pm.discover_stigmergic_miner(
                    log, st.session_state.columns.index(st.session_state.archetype), params)
            st.success('Process map generated successfully!', icon="🤖")
            st.session_state.is_stigmergic_generated = True
            st.session_state.stigmergic_menu = "Stigmergic Map"

    def generate_archetypal_map():
        """
        Function that generates the archetypal map when a new dataset is loaded into the application.
        """
        if st.session_state.uploaded_file is None:
            st.warning('Upload a file first!', icon="⚠️")
        else:
            parent_path = pathlib.Path(__file__).parent.parent.resolve()
            save_path = os.path.join(parent_path, "data")
            complete_name = os.path.join(save_path, st.session_state.uploaded_file.name)
            destination_file = open(complete_name, "wb")

            loaded_data = st.session_state.uploaded_file.getvalue()
            destination_file.write(loaded_data)
            destination_file.close()

            log = pm.read_log(os.path.join("webapp/data", st.session_state.uploaded_file.name))
            params = [significance_norm, evaporation_rate, st.session_state.export_timeseries]

            with st.spinner(text="In progress..."):
                st.session_state.stigmergic_obj = pm.discover_overall_stigmergic_miner(
                    log, np.arange(st.session_state.data.shape[0]), params)

            st.success('Process map generated successfully!', icon="🤖")
            st.session_state.is_stigmergic_generated = True
            st.session_state.stigmergic_menu = "Archetypal Map"

    st.header("Metrics")
    evaporation_rate = st.slider('Evaporation rate', 0.01, 1.00, 1.00, format="%f",
                                 disabled=st.session_state.disabled_generation)
    significance_norm = st.slider('Signals normalization', 0.1, 5.0, 0.5, format="%f",
                                  disabled=st.session_state.disabled_generation)

    def generate_archetype():
        """
        Function that generates a new archetype based on the dataset.
        """
        if st.session_state.uploaded_file is None:
            st.warning('Upload a file first!', icon="⚠️")
        elif len(st.session_state.columns) == 5:
            parent_path = pathlib.Path(__file__).parent.parent.resolve()
            save_path = os.path.join(parent_path, "data")
            complete_name = os.path.join(save_path, st.session_state.uploaded_file.name)
            destination_file = open(complete_name, "wb")

            loaded_data = st.session_state.uploaded_file.getvalue()
            destination_file.write(loaded_data)
            destination_file.close()

            log = pm.read_log(os.path.join("webapp/data", st.session_state.uploaded_file.name))
            st.session_state.columns.append("Dataset Transition")

            new_archetype = pm.export_time_series(log, significance_norm, True)

            st.session_state.data = np.vstack((st.session_state.data, new_archetype))
            st.session_state.chart_data = pd.DataFrame(
                st.session_state.data.transpose(),
                columns=st.session_state.columns)
            st.session_state.export_timeseries = False
            st.session_state.disabled_generation = True

    def insert_archetype():
        """
        Function that insert a new archetype defined by the user.
        """
        new_archetype = transposed_data.get(0)
        pm.update_archetype_file(new_archetype)
        if len(st.session_state.columns) == 5:
            st.session_state.columns.append("User Transition")
            st.session_state.data = np.vstack((st.session_state.data, new_archetype))
        else:
            st.session_state.data[-1] = new_archetype
        st.session_state.chart_data = pd.DataFrame(
            st.session_state.data.transpose(),
            columns=st.session_state.columns)


    expander = st.expander("Custom Archetype", expanded=False)
    with expander:
        st.subheader("Generate from dataset")
        st.button("Generete archetype", on_click=generate_archetype, disabled=st.session_state.disabled_generation)

        st.subheader("Custom archetype shape")

        def get_data() -> pd.DataFrame:
            df = pd.DataFrame(
                [
                    {"1": False, "2": True, "3": True, "4": True, "5": True, "6": True, "7": True, "8": True, "9": True,
                     "10": True, "11": True, "12": True, "13": True, "14": True, "15": True, "16": True, "17": True,
                     "18": True,
                     "19": True, "20": True},
                ]
            )
            return df

        def get_active_hist(df: pd.DataFrame) -> st.line_chart:
            return st.line_chart(df)

        df = get_data()

        edited_df = st.data_editor(
            df,
            use_container_width=True,
            hide_index=True,
            column_config=None,
            height=78
        )

        # Conversion of the data to show on screen
        edited_df = edited_df.astype(int)
        transposed_data = edited_df.transpose().to_dict(orient='list')

        st.line_chart(transposed_data, use_container_width=True, height=150)

        st.button("Custom archetype", on_click=insert_archetype, disabled=st.session_state.disabled_generation)

    def write_archetype():
        """
        Function that updates the archetypes menu with the newly generated archetype.
        """
        st.write("")
        st.session_state.archetype = st.radio("Select archetype", st.session_state.columns, horizontal=False,
                                              label_visibility='collapsed', index=st.session_state.radio_index)
        st.line_chart(st.session_state.chart_data[st.session_state.archetype], height=150, width=400)

    # Update archetypes menu
    write_archetype()

    cl1, cl2 = st.columns(2)
    with cl1:
        st.button("Generate process map", on_click=generate_process_map)
    with cl2:
        st.button("Generate archetypal map", on_click=generate_archetypal_map)

# Initialize the page with the 'Process Map' option selected.
elif selected_section == "Stigmergic Map":
    init_archetypes()
    path = pathlib.Path(__file__).parent.parent.resolve()
    try:
        # Plot the generated process map.
        f = open(os.path.join(path, "media/graphs/stigmergic.gv"), "r")
        lines = f.readlines()
        svg = ''.join(lines)
        st.graphviz_chart(svg)

        # Link the SVG file to the download button,
        file = open(os.path.join(path, "media/graphs/stigmergic.gv.svg"), "r")
        btn = st.download_button(
            label="Download .svg",
            data=file,
            file_name="stigmergic.svg",
            mime="image/svg+xml"
        )

        # Verify whether the process map has been generated during this session. If this condition is met, the process
        # map object is saved in the session state and allow updates using the provided parameters.
        if st.session_state.is_stigmergic_generated:
            def update_node():
                """
                Function that updates the graph nodes based on the parameter selected by the user.
                """
                pm.update_node_filter_stigmergic(st.session_state.stigmergic_obj, st.session_state.sign_cutoff_slider_s)

            node_expander = st.sidebar.expander("Node", expanded=False)
            node_expander.slider('Significance CutOff', 0.000, 1.000, 0.000, step=0.001, format="%f",
                                 on_change=update_node,
                                 key='sign_cutoff_slider_s')

            def update_edge():
                """
                Function that updates the graph edges based on the parameters selected by the user.
                """
                pm.update_edge_filter_stigmergic(st.session_state.stigmergic_obj,
                                                 int(st.session_state.edge_transform_s == 'Fuzzy Edges'),
                                                 st.session_state.preserve_edge_slider_s,
                                                 st.session_state.interpret_abs_s, st.session_state.ignore_self_loops_s)

            edge_expander = st.sidebar.expander("Edge", expanded=False)
            edge_expander.radio("edge_transform", ["Fuzzy Edges", "Best Edges"], horizontal=True, on_change=update_edge,
                                label_visibility='collapsed', key='edge_transform_s')
            if st.session_state.edge_transform_s == 'Fuzzy Edges':
                edge_expander.checkbox('Interpret Absolute', value=False, on_change=update_edge, key='interpret_abs_s')
                edge_expander.slider('Preserve Edge', 0.001, 1.000, 0.200, step=0.001, format="%f",
                                     on_change=update_edge, key='preserve_edge_slider_s')
            edge_expander.checkbox('Ignore Self-Loops', value=True, on_change=update_edge, key='ignore_self_loops_s')

            def update_concurrency():
                """
                Function that updates the concurrency based on the parameters selected by the user.
                """
                pm.update_concurrency_filter_stigmergic(st.session_state.stigmergic_obj,
                                                        st.session_state.filter_concurrency_s,
                                                        st.session_state.preserve_slider_s,
                                                        st.session_state.offset_slider_s)

            concur_expander = st.sidebar.expander("Concurrency", expanded=False)
            concur_expander.checkbox('Filter Concurrency', value=True, on_change=update_concurrency,
                                     key='filter_concurrency_s')
            if st.session_state.filter_concurrency_s:
                concur_expander.slider('Preserve', 0.000, 1.000, 0.600, step=0.001, format="%f",
                                       on_change=update_concurrency, key='preserve_slider_s')
                concur_expander.slider('Balance', 0.000, 1.000, 0.700, step=0.001, format="%f",
                                       on_change=update_concurrency, key='offset_slider_s')
    except:
        st.warning('First generate the process model!', icon="⚠️")

elif selected_section == "Archetypal Map":
    init_archetypes()
    path = pathlib.Path(__file__).parent.parent.resolve()
    try:
        # Plot the generated process map.
        f = open(os.path.join(path, "media/graphs/archetypal.gv"), "r")
        lines = f.readlines()
        svg = ''.join(lines)
        st.graphviz_chart(svg)

        # Link the SVG file to the download button,
        file = open(os.path.join(path, "media/graphs/archetypal.gv.svg"), "r")
        btn = st.download_button(
            label="Download .svg",
            data=file,
            file_name="archetypal.svg",
            mime="image/svg+xml"
        )
    except:
        st.warning('First generate the process model!', icon="⚠️")