Spaces:
Runtime error
Runtime error
File size: 4,823 Bytes
0469d65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
#!/usr/bin/env python3
"""
Simple Safety Monitor Demo - Just Person Detection
Tests basic camera and person detection functionality.
"""
import cv2
import time
import sys
from ultralytics import YOLO
import numpy as np
def main():
print("π Simple Safety Monitor Demo")
print("============================")
print("This demo just detects people to test basic functionality")
print("Controls: SPACE=pause, S=save, Q=quit")
print("-" * 50)
try:
# Initialize YOLO model
print("Loading YOLO model...")
model = YOLO('yolov8n.pt')
print("β
Model loaded")
# Print available classes
print("π Available detection classes:")
for i, class_name in model.names.items():
if i < 10: # Show first 10 classes
print(f" {i}: {class_name}")
print(" ... and more")
print()
# Initialize camera
print("π₯ Connecting to camera...")
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print("β Could not open camera")
return 1
# Set camera properties
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
print("β
Camera connected")
print("π Starting detection... Press Q to quit")
print()
# Stats
frame_count = 0
fps_start = time.time()
people_detected = 0
while True:
ret, frame = cap.read()
if not ret:
print("Failed to grab frame")
break
frame_count += 1
# Run detection
results = model(frame, conf=0.5, verbose=False)
# Process results
people_count = 0
for result in results:
boxes = result.boxes
if boxes is not None:
for box in boxes:
# Get class info
class_id = int(box.cls[0])
class_name = model.names[class_id]
confidence = float(box.conf[0])
# Only process people
if class_name == 'person' and confidence > 0.5:
people_count += 1
people_detected += 1
# Get bounding box
x1, y1, x2, y2 = map(int, box.xyxy[0])
# Draw green box for person
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
# Add label
label = f"Person: {confidence:.2f}"
cv2.putText(frame, label, (x1, y1-10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# Add stats to frame
stats_text = [
f"People in frame: {people_count}",
f"Total detected: {people_detected}",
f"Press Q to quit, SPACE to pause"
]
for i, text in enumerate(stats_text):
cv2.putText(frame, text, (10, 30 + i * 25),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
# Calculate FPS
if frame_count % 30 == 0:
fps = 30 / (time.time() - fps_start)
fps_start = time.time()
print(f"\rπ FPS: {fps:.1f} | People: {people_count} | Total: {people_detected}",
end='', flush=True)
# Show frame
cv2.imshow('Simple Safety Monitor - Person Detection', frame)
# Handle keys
key = cv2.waitKey(1) & 0xFF
if key == ord('q') or key == 27:
break
elif key == ord('s'):
filename = f"detection_capture_{int(time.time())}.jpg"
cv2.imwrite(filename, frame)
print(f"\nπΈ Saved: {filename}")
elif key == ord(' '):
print("\nβΈοΈ Paused - press any key to continue")
cv2.waitKey(0)
print("βΆοΈ Resumed")
except Exception as e:
print(f"\nβ Error: {e}")
return 1
finally:
if 'cap' in locals():
cap.release()
cv2.destroyAllWindows()
print(f"\n\nβ
Demo completed!")
print(f" Total people detected: {people_detected}")
return 0
if __name__ == "__main__":
sys.exit(main()) |