Spaces:
Runtime error
Runtime error
File size: 19,824 Bytes
0469d65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
#!/usr/bin/env python3
"""
SafetyMaster Pro - Gradio Interface
Real-time safety equipment detection with modern web UI
Optimized for easy deployment on Hugging Face Spaces, Gradio Cloud, and other platforms
"""
import gradio as gr
import cv2
import numpy as np
import PIL.Image
import time
import json
import os
from datetime import datetime
from typing import Dict, List, Tuple, Optional
import threading
import queue
# Import our existing safety detector
from safety_detector import SafetyDetector
from camera_manager import CameraManager
class SafetyMasterGradio:
"""Gradio interface for SafetyMaster Pro"""
def __init__(self):
"""Initialize the Gradio interface"""
self.detector = None
self.camera_manager = None
self.monitoring_active = False
self.violation_log = []
self.frame_queue = queue.Queue(maxsize=10)
# Initialize detector
self._initialize_detector()
def _initialize_detector(self):
"""Initialize the safety detector"""
try:
print("π€ Loading AI model for safety detection...")
self.detector = SafetyDetector()
print("β
Safety detector initialized successfully")
return True
except Exception as e:
print(f"β Error initializing detector: {e}")
return False
def detect_safety_violations_image(self, image: PIL.Image.Image) -> Tuple[PIL.Image.Image, str, str]:
"""
Detect safety violations in uploaded image
Args:
image: PIL Image from Gradio
Returns:
Tuple of (annotated_image, violations_json, summary_text)
"""
if image is None:
return None, "No image provided", "Please upload an image"
if self.detector is None:
return image, "Detector not initialized", "Error: AI model not loaded"
try:
# Convert PIL to OpenCV format
cv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# Run detection
results = self.detector.detect_safety_violations(cv_image)
# Draw annotations
annotated_frame = self.detector.draw_detections(cv_image, results)
# Convert back to PIL for Gradio
annotated_image = PIL.Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
# Create violation summary
violations = results.get('violations', [])
people_count = results.get('people_count', 0)
safety_equipment = results.get('safety_equipment', {})
# Format violations as JSON
violations_json = json.dumps({
'people_detected': people_count,
'safety_equipment_detected': safety_equipment,
'violations': violations,
'processing_time': results.get('processing_time', 0),
'timestamp': datetime.now().isoformat()
}, indent=2)
# Create human-readable summary
summary_parts = [
f"π₯ People Detected: {people_count}",
f"β‘ Processing Time: {results.get('processing_time', 0):.3f}s"
]
if safety_equipment:
summary_parts.append("\nπ‘οΈ Safety Equipment Detected:")
for equipment, count in safety_equipment.items():
if count > 0:
summary_parts.append(f" β’ {equipment.replace('_', ' ').title()}: {count}")
if violations:
summary_parts.append(f"\nβ οΈ Safety Violations Found: {len(violations)}")
for violation in violations:
severity_emoji = "π΄" if violation.get('severity') == 'high' else "π‘"
summary_parts.append(f" {severity_emoji} {violation.get('description', 'Unknown violation')}")
else:
summary_parts.append("\nβ
No Safety Violations Detected")
summary_text = "\n".join(summary_parts)
# Log violation if any
if violations:
self._log_violation(violations, 'image_upload')
return annotated_image, violations_json, summary_text
except Exception as e:
error_msg = f"Error processing image: {str(e)}"
return image, f'{{"error": "{error_msg}"}}', f"β {error_msg}"
def start_camera_monitoring(self) -> Tuple[str, str]:
"""Start real-time camera monitoring"""
try:
if self.monitoring_active:
return "β οΈ Monitoring already active", "Camera monitoring is already running"
# Initialize camera
self.camera_manager = CameraManager(source=0)
if not self.camera_manager.start_capture():
return "β Failed to start camera", "Could not access camera. Please check permissions."
self.monitoring_active = True
# Start monitoring thread
monitor_thread = threading.Thread(target=self._camera_monitoring_loop, daemon=True)
monitor_thread.start()
return "β
Camera monitoring started", "Real-time safety monitoring is now active"
except Exception as e:
return f"β Error: {str(e)}", f"Failed to start monitoring: {str(e)}"
def stop_camera_monitoring(self) -> Tuple[str, str]:
"""Stop real-time camera monitoring"""
try:
self.monitoring_active = False
if self.camera_manager:
self.camera_manager.stop_capture()
self.camera_manager = None
return "π Camera monitoring stopped", "Real-time monitoring has been stopped"
except Exception as e:
return f"β Error: {str(e)}", f"Failed to stop monitoring: {str(e)}"
def _camera_monitoring_loop(self):
"""Background loop for camera monitoring"""
while self.monitoring_active and self.camera_manager:
try:
frame_data = self.camera_manager.get_latest_frame()
if frame_data is not None:
frame, timestamp = frame_data
# Run detection
results = self.detector.detect_safety_violations(frame)
# Draw annotations
annotated_frame = self.detector.draw_detections(frame, results)
# Convert to PIL for Gradio
pil_image = PIL.Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
# Add to queue (non-blocking)
try:
self.frame_queue.put_nowait((pil_image, results))
except queue.Full:
# Remove old frame and add new one
try:
self.frame_queue.get_nowait()
self.frame_queue.put_nowait((pil_image, results))
except queue.Empty:
pass
# Log violations
if results.get('violations'):
self._log_violation(results['violations'], 'camera_monitoring')
time.sleep(0.1) # 10 FPS
except Exception as e:
print(f"Error in camera monitoring: {e}")
time.sleep(1)
def get_camera_frame(self) -> Tuple[PIL.Image.Image, str]:
"""Get latest camera frame for Gradio display"""
try:
if not self.monitoring_active:
return None, "Camera monitoring not active"
# Get latest frame from queue
try:
pil_image, results = self.frame_queue.get_nowait()
# Create status text
people_count = results.get('people_count', 0)
violations = results.get('violations', [])
status_parts = [
f"π₯ People: {people_count}",
f"β οΈ Violations: {len(violations)}",
f"π {datetime.now().strftime('%H:%M:%S')}"
]
if violations:
status_parts.append("π΄ SAFETY VIOLATIONS DETECTED!")
else:
status_parts.append("β
All Clear")
status_text = " | ".join(status_parts)
return pil_image, status_text
except queue.Empty:
return None, "Waiting for camera frame..."
except Exception as e:
return None, f"Error: {str(e)}"
def _log_violation(self, violations: List[Dict], source: str):
"""Log violations to internal log"""
timestamp = datetime.now().isoformat()
for violation in violations:
log_entry = {
'timestamp': timestamp,
'source': source,
'type': violation.get('type', 'unknown'),
'description': violation.get('description', 'Unknown violation'),
'severity': violation.get('severity', 'medium')
}
self.violation_log.append(log_entry)
# Keep only last 100 violations
if len(self.violation_log) > 100:
self.violation_log = self.violation_log[-100:]
def get_violation_log(self) -> str:
"""Get formatted violation log"""
if not self.violation_log:
return "No violations recorded"
log_text = "π Recent Safety Violations:\n\n"
# Show last 10 violations
recent_violations = self.violation_log[-10:]
for i, violation in enumerate(reversed(recent_violations), 1):
timestamp = datetime.fromisoformat(violation['timestamp']).strftime('%H:%M:%S')
severity_emoji = "π΄" if violation['severity'] == 'high' else "π‘"
log_text += f"{i}. [{timestamp}] {severity_emoji} {violation['description']}\n"
log_text += f" Source: {violation['source']} | Type: {violation['type']}\n\n"
if len(self.violation_log) > 10:
log_text += f"... and {len(self.violation_log) - 10} more violations\n"
log_text += f"\nTotal violations logged: {len(self.violation_log)}"
return log_text
def get_model_info(self) -> str:
"""Get information about the loaded model"""
if self.detector is None:
return "β Detector not initialized"
try:
classes = self.detector.get_model_classes()
device = getattr(self.detector, 'device', 'unknown')
info_text = f"""
π€ **SafetyMaster Pro AI Model Information**
**Device**: {device}
**Model Type**: YOLOv8 PPE Detection
**Classes Detected**: {len(classes)} total
**Safety Equipment**:
β’ Hard Hats / Helmets
β’ Safety Vests
β’ Face Masks
β’ Safety Glasses
β’ Gloves
β’ Hearing Protection
**Violations Detected**:
β’ Missing Hard Hat
β’ Missing Safety Vest
β’ Missing Face Mask
β’ Person without PPE
**Model Classes**: {', '.join(classes[:10])}{'...' if len(classes) > 10 else ''}
"""
return info_text.strip()
except Exception as e:
return f"β Error getting model info: {str(e)}"
def create_interface(self) -> gr.Blocks:
"""Create the Gradio interface"""
# Custom CSS for better styling
css = """
.gradio-container {
max-width: 1200px !important;
}
.violation-box {
background-color: #fee;
border: 2px solid #f88;
border-radius: 8px;
padding: 10px;
}
.success-box {
background-color: #efe;
border: 2px solid #8f8;
border-radius: 8px;
padding: 10px;
}
"""
with gr.Blocks(
title="SafetyMaster Pro - AI Safety Monitoring",
theme=gr.themes.Soft(),
css=css
) as interface:
# Header
gr.Markdown("""
# π‘οΈ SafetyMaster Pro - AI Safety Monitoring
**Real-time PPE detection and safety compliance monitoring**
Detects: Hard Hats, Safety Vests, Face Masks, Safety Glasses, and Safety Violations
""")
with gr.Tabs():
# Tab 1: Image Upload Detection
with gr.Tab("π· Image Analysis"):
gr.Markdown("### Upload an image to detect safety equipment and violations")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
type="pil",
label="Upload Image",
height=400
)
detect_btn = gr.Button(
"π Analyze Safety Compliance",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
output_image = gr.Image(
label="Detection Results",
height=400
)
with gr.Row():
with gr.Column():
summary_text = gr.Textbox(
label="π Summary",
lines=8,
max_lines=15
)
with gr.Column():
violations_json = gr.JSON(
label="π Detailed Results",
height=300
)
# Connect the detection function
detect_btn.click(
fn=self.detect_safety_violations_image,
inputs=[input_image],
outputs=[output_image, violations_json, summary_text]
)
# Tab 2: Real-time Camera Monitoring
with gr.Tab("πΉ Live Camera Monitoring"):
gr.Markdown("### Real-time safety monitoring using your camera")
with gr.Row():
start_btn = gr.Button("βΆοΈ Start Monitoring", variant="primary")
stop_btn = gr.Button("βΉοΈ Stop Monitoring", variant="stop")
with gr.Row():
camera_status = gr.Textbox(
label="π‘ Camera Status",
value="Camera not started",
interactive=False
)
frame_status = gr.Textbox(
label="π Live Status",
value="No data",
interactive=False
)
live_image = gr.Image(
label="π΄ Live Camera Feed",
height=500
)
# Connect camera functions
start_btn.click(
fn=self.start_camera_monitoring,
outputs=[camera_status, frame_status]
)
stop_btn.click(
fn=self.stop_camera_monitoring,
outputs=[camera_status, frame_status]
)
# Auto-refresh camera feed every 2 seconds
interface.load(
fn=self.get_camera_frame,
outputs=[live_image, frame_status],
every=2
)
# Tab 3: Violation Log
with gr.Tab("π Violation Log"):
gr.Markdown("### Recent safety violations and compliance history")
refresh_log_btn = gr.Button("π Refresh Log", variant="secondary")
violation_log_display = gr.Textbox(
label="π Violation History",
lines=20,
max_lines=30,
value="No violations recorded"
)
refresh_log_btn.click(
fn=self.get_violation_log,
outputs=[violation_log_display]
)
# Auto-refresh log every 10 seconds
interface.load(
fn=self.get_violation_log,
outputs=[violation_log_display],
every=10
)
# Tab 4: Model Information
with gr.Tab("π€ AI Model Info"):
gr.Markdown("### Information about the AI detection model")
model_info_display = gr.Markdown(
value=self.get_model_info()
)
refresh_model_btn = gr.Button("π Refresh Model Info")
refresh_model_btn.click(
fn=self.get_model_info,
outputs=[model_info_display]
)
# Footer
gr.Markdown("""
---
**SafetyMaster Pro** - Powered by YOLOv8 AI Detection | Built with β€οΈ for workplace safety
β οΈ **Note**: For camera monitoring, please allow camera access when prompted by your browser.
""")
return interface
def main():
"""Main function to launch the Gradio app"""
print("π Starting SafetyMaster Pro - Gradio Interface")
# Create the Gradio app
app = SafetyMasterGradio()
interface = app.create_interface()
# Launch configuration
launch_kwargs = {
"server_name": "0.0.0.0", # Allow external access
"server_port": int(os.environ.get("PORT", 7860)), # Use PORT env var or default
"share": False, # Set to True for public sharing
"debug": False,
"show_error": True,
"quiet": False
}
print(f"π Launching on port {launch_kwargs['server_port']}")
print("π± Access the app at: http://localhost:7860")
# Launch the interface
interface.launch(**launch_kwargs)
if __name__ == "__main__":
main() |