Spaces:
Sleeping
Sleeping
File size: 40,346 Bytes
ac9ec2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 |
import cv2
import numpy as np
from ultralytics import YOLO
import torch
import time
from datetime import datetime
import os
import json
from threading import Thread
import queue
from typing import Dict, List, Tuple, Optional
import requests
class SafetyDetector:
"""
Real-time safety compliance detection system using YOLO for object detection.
Detects people and safety equipment like hard hats, safety vests, and safety glasses.
"""
def __init__(self, model_path: Optional[str] = None, confidence_threshold: float = 0.5):
"""
Initialize the safety detector with a specialized PPE detection model.
Args:
model_path: Path to custom model, if None will download PPE model
confidence_threshold: Minimum confidence for detections
"""
self.confidence_threshold = confidence_threshold
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Stricter confidence thresholds for different equipment types to reduce false positives
self.equipment_confidence_thresholds = {
'hardhat': 0.7, # Higher threshold for hard hats (hair confusion)
'safety_vest': 0.75, # Higher threshold for safety vests (clothing confusion)
'mask': 0.6, # Moderate threshold for masks
'person': 0.5, # Standard threshold for people
'no_hardhat': 0.6, # Moderate threshold for NO- detections
'no_safety_vest': 0.6,
'no_mask': 0.6
}
# Try to load a specialized PPE detection model
self.model = self._load_ppe_model(model_path)
# PPE class names - these are the actual classes we expect from PPE models
self.ppe_classes = {
'hardhat': ['Hardhat', 'hardhat', 'helmet', 'hard hat'],
'safety_vest': ['Safety Vest', 'safety vest', 'vest', 'safety-vest', 'Safety-Vest'],
'no_hardhat': ['NO-Hardhat', 'no-hardhat', 'no hardhat', 'NO-Helmet'],
'no_safety_vest': ['NO-Safety Vest', 'no-safety-vest', 'no safety vest', 'NO-Safety-Vest'],
'person': ['Person', 'person'],
'mask': ['Mask', 'mask'],
'no_mask': ['NO-Mask', 'no-mask', 'no mask'],
'safety_gloves': ['Safety Gloves', 'safety-gloves', 'gloves', 'Gloves'],
'safety_glasses': ['Safety Glasses', 'safety-glasses', 'glasses', 'Safety-Glasses'],
'hearing_protection': ['Hearing Protection', 'hearing-protection', 'ear protection']
}
print(f"Using device: {self.device}")
print(f"Loaded PPE detection model with stricter confidence thresholds")
print(f"Equipment thresholds: {self.equipment_confidence_thresholds}")
# Colors for bounding boxes
self.colors = {
'person': (0, 255, 0), # Green for compliant person
'violation': (0, 0, 255), # Red for safety violation
'equipment': (255, 255, 0), # Yellow for safety equipment
'warning': (0, 165, 255) # Orange for warnings
}
# Violation tracking
self.violations = []
self.violation_images_dir = "violation_captures"
os.makedirs(self.violation_images_dir, exist_ok=True)
def _load_ppe_model(self, model_path: Optional[str] = None) -> YOLO:
"""Load a specialized PPE detection model."""
if model_path and os.path.exists(model_path):
print(f"Loading custom model from {model_path}")
return YOLO(model_path)
# Try to download YOLOv8-compatible PPE models
ppe_model_urls = [
# Try the snehilsanyal YOLOv8 PPE model (best.pt)
"https://github.com/snehilsanyal/Construction-Site-Safety-PPE-Detection/raw/main/models/best.pt",
# Try mayank13-01 YOLOv8 PPE model
"https://github.com/mayank13-01/Yolov8-PPE/raw/main/YOLO-Weights/ppe.pt"
]
for i, url in enumerate(ppe_model_urls):
try:
model_filename = f"ppe_yolov8_model_{i}.pt"
if not os.path.exists(model_filename):
print(f"Downloading PPE detection model from {url}...")
response = requests.get(url, timeout=60)
if response.status_code == 200:
with open(model_filename, 'wb') as f:
f.write(response.content)
print(f"Downloaded PPE model successfully as {model_filename}")
if os.path.exists(model_filename):
print(f"Loading YOLOv8 PPE model from {model_filename}")
model = YOLO(model_filename)
# Test if the model loads properly
classes = self._get_model_classes(model)
print(f"Model classes: {classes}")
# Check if it has PPE-related classes
ppe_related = any(
any(keyword in str(cls).lower() for keyword in ['hardhat', 'vest', 'helmet', 'mask', 'person'])
for cls in classes
)
if ppe_related:
print(f"✅ Found PPE-capable model with {len(classes)} classes")
return model
else:
print(f"⚠️ Model doesn't seem to have PPE classes: {classes}")
except Exception as e:
print(f"Failed to download/load from {url}: {e}")
continue
# Fallback to YOLOv8 with a warning
print("⚠️ Warning: Could not load specialized PPE model, falling back to YOLOv8n")
print(" Note: YOLOv8n can detect people but not safety equipment")
return YOLO('yolov8n.pt')
def _get_model_classes(self, model=None) -> List[str]:
"""Get the list of classes the model can detect."""
if model is None:
model = self.model
if hasattr(model, 'names'):
return list(model.names.values())
return []
def _get_class_category(self, class_name: str) -> str:
"""Map detected class name to our safety categories."""
class_name_lower = class_name.lower()
for category, variations in self.ppe_classes.items():
for variation in variations:
if variation.lower() in class_name_lower or class_name_lower in variation.lower():
return category
return class_name_lower
def detect_safety_violations(self, frame: np.ndarray) -> Dict:
"""
Detect safety violations in the given frame with improved accuracy.
Returns:
Dictionary containing detection results and violations
"""
start_time = time.time()
# Run detection with optimized settings for speed
results = self.model(frame, conf=0.3, verbose=False, imgsz=640, half=False)
detections = []
people_count = 0
safety_equipment_detected = {
'hardhat': 0,
'safety_vest': 0,
'safety_gloves': 0,
'safety_glasses': 0,
'hearing_protection': 0,
'mask': 0
}
violations = []
no_equipment_detections = [] # Track NO- detections separately
# Process detections with stricter filtering
for r in results:
boxes = r.boxes
if boxes is not None:
for box in boxes:
# Get detection info
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
confidence = box.conf[0].cpu().numpy()
class_id = int(box.cls[0].cpu().numpy())
# Get class name
if hasattr(self.model, 'names'):
class_name = self.model.names[class_id]
else:
class_name = f"class_{class_id}"
# Map to our categories
category = self._get_class_category(class_name)
# Apply stricter confidence thresholds based on equipment type
required_confidence = self.equipment_confidence_thresholds.get(category, self.confidence_threshold)
# Skip detections that don't meet the stricter threshold
if confidence < required_confidence:
continue
detection = {
'bbox': [int(x1), int(y1), int(x2), int(y2)],
'confidence': float(confidence),
'class': class_name,
'category': category
}
detections.append(detection)
# Count people and safety equipment
if category == 'person':
people_count += 1
elif category in safety_equipment_detected:
safety_equipment_detected[category] += 1
elif category in ['hardhat', 'safety_vest', 'mask'] and not category.startswith('no_'):
safety_equipment_detected[category] += 1
# Handle negative detections (NO-Hardhat, NO-Mask, etc.)
# These indicate violations - a person without required equipment
if category.startswith('no_'):
equipment_type = category.replace('no_', '')
if equipment_type in ['hardhat', 'safety_vest', 'mask']:
no_equipment_detections.append({
'type': f'missing_{equipment_type}',
'severity': 'high',
'description': f'Person detected without {equipment_type.replace("_", " ").title()}',
'bbox': [int(x1), int(y1), int(x2), int(y2)],
'confidence': float(confidence),
'equipment_type': equipment_type
})
# Create violations based on NO- detections (these are more reliable)
violations.extend(no_equipment_detections)
# If we have people but no NO- detections, check equipment ratios
if people_count > 0 and len(no_equipment_detections) == 0:
required_equipment = ['hardhat', 'safety_vest', 'mask']
for equipment in required_equipment:
detected_count = safety_equipment_detected[equipment]
# If significantly fewer equipment than people, assume violations
if detected_count < people_count * 0.8: # Allow some tolerance
missing_count = people_count - detected_count
equipment_name = equipment.replace("_", " ").title()
violations.append({
'type': f'missing_{equipment}',
'severity': 'high',
'description': f'{missing_count} person(s) likely missing {equipment_name}',
'count': missing_count
})
# Special handling for masks - they're often not detected well
mask_detected = safety_equipment_detected['mask']
no_mask_detected = len([v for v in no_equipment_detections if v['equipment_type'] == 'mask'])
if people_count > 0 and mask_detected == 0 and no_mask_detected == 0:
# No mask detections at all - assume people are not wearing masks
violations.append({
'type': 'missing_mask',
'severity': 'high',
'description': f'{people_count} person(s) not wearing Face Mask',
'count': people_count
})
processing_time = time.time() - start_time
return {
'detections': detections,
'people_count': people_count,
'safety_equipment': safety_equipment_detected,
'violations': violations,
'processing_time': processing_time,
'fps': 1.0 / processing_time if processing_time > 0 else 0
}
def draw_detections(self, frame: np.ndarray, results: Dict) -> np.ndarray:
"""
Draw premium bounding boxes only for POSITIVE equipment detections.
No boxes for missing equipment - violations shown through person status only.
Args:
frame: Input frame
results: Detection results containing detections, violations, etc.
Returns:
Annotated frame with premium styling
"""
annotated_frame = frame.copy()
height, width = annotated_frame.shape[:2]
# Create overlay for semi-transparent effects
overlay = annotated_frame.copy()
# Premium color scheme
colors = {
'person_compliant': (46, 204, 113), # Emerald green
'person_violation': (231, 76, 60), # Red
'equipment': (52, 152, 219), # Blue
'hardhat': (46, 204, 113), # Green
'safety_vest': (241, 196, 15), # Yellow
'mask': (0, 191, 255), # Deep sky blue
'violation_bg': (231, 76, 60), # Red background
'text_bg': (44, 62, 80), # Dark blue-gray
'text_primary': (255, 255, 255), # White
'text_secondary': (149, 165, 166), # Light gray
'shadow': (0, 0, 0), # Black shadow
'accent': (155, 89, 182), # Purple accent
}
# Track people and their compliance status
people_status = {}
# First pass: categorize people
for detection in results.get('detections', []):
class_name = detection['class'].lower()
bbox = detection['bbox']
confidence = detection['confidence']
if 'person' in class_name:
person_id = f"person_{bbox[0]}_{bbox[1]}"
people_status[person_id] = {
'bbox': bbox,
'confidence': confidence,
'violations': [],
'equipment': []
}
# Map violations to people
for violation in results.get('violations', []):
if 'bbox' in violation:
# This is a specific violation with a bounding box (from NO- detections)
violation_bbox = violation['bbox']
# Find the closest person to this violation
closest_person = None
min_distance = float('inf')
for person_id, person_data in people_status.items():
person_bbox = person_data['bbox']
# Calculate distance between violation and person
distance = abs(violation_bbox[0] - person_bbox[0]) + abs(violation_bbox[1] - person_bbox[1])
if distance < min_distance:
min_distance = distance
closest_person = person_id
if closest_person and min_distance < 100: # Within reasonable distance
violation_type = violation['type'].replace('missing_', '')
people_status[closest_person]['violations'].append(violation_type)
else:
# General violation - apply to all people (when equipment count < people count)
violation_type = violation['type'].replace('missing_', '')
for person_id in people_status:
people_status[person_id]['violations'].append(violation_type)
# If no specific violations detected but people are present, assume they're missing all required equipment
if len(people_status) > 0 and len(results.get('violations', [])) == 0:
# Check if we have any positive equipment detections
equipment_detected = any(
detection['category'] in ['hardhat', 'safety_vest', 'mask']
for detection in results.get('detections', [])
if detection['category'] in ['hardhat', 'safety_vest', 'mask']
)
# If no equipment detected at all, mark all people as having violations
if not equipment_detected:
for person_id in people_status:
people_status[person_id]['violations'] = ['hardhat', 'safety_vest', 'mask']
# ONLY draw POSITIVE equipment detections (when equipment IS being worn)
for detection in results.get('detections', []):
class_name = detection['class'].lower()
category = detection.get('category', '')
# Skip people and NO- detections - we only want positive equipment
if 'person' in class_name or 'no-' in class_name or 'no_' in category:
continue
# Only draw positive equipment detections
if category in ['hardhat', 'safety_vest', 'mask'] or any(equip in class_name for equip in ['hardhat', 'vest', 'helmet', 'safety', 'mask']):
bbox = detection['bbox']
confidence = detection['confidence']
# Choose color and label based on equipment type
if any(x in class_name for x in ['hardhat', 'helmet']) or category == 'hardhat':
color = colors['hardhat']
equipment_type = "Hard Hat ✓"
elif 'vest' in class_name or category == 'safety_vest':
color = colors['safety_vest']
equipment_type = "Safety Vest ✓"
elif 'mask' in class_name or category == 'mask':
color = colors['mask']
equipment_type = "Face Mask ✓"
else:
color = colors['equipment']
equipment_type = "Safety Equipment ✓"
# Draw equipment with premium styling
self._draw_premium_bbox(overlay, annotated_frame, bbox, color,
equipment_type, confidence,
bbox_type="equipment", colors=colors)
# Draw people with compliance status (no violation indicators on person boxes)
for person_id, person_data in people_status.items():
bbox = person_data['bbox']
confidence = person_data['confidence']
violations = person_data['violations']
# Determine person status
is_compliant = len(violations) == 0
color = colors['person_compliant'] if is_compliant else colors['person_violation']
status_text = "COMPLIANT" if is_compliant else "VIOLATION"
# Draw person with premium styling (no violation details on the box)
self._draw_premium_bbox(overlay, annotated_frame, bbox, color,
f"Person - {status_text}", confidence,
bbox_type="person", violations=None, # Don't show violation details on person box
colors=colors)
# Blend overlay with original frame for semi-transparent effects
alpha = 0.15
cv2.addWeighted(overlay, alpha, annotated_frame, 1 - alpha, 0, annotated_frame)
# Statistics are now handled by the web UI, no overlay needed on video feed
return annotated_frame
def _draw_premium_bbox(self, overlay, frame, bbox, color, label, confidence,
bbox_type="default", violations=None, colors=None):
"""Draw a premium-styled bounding box with advanced visual effects."""
x1, y1, x2, y2 = map(int, bbox)
# Box dimensions
box_width = x2 - x1
box_height = y2 - y1
# Draw shadow first (slightly offset)
shadow_offset = 3
shadow_color = colors['shadow']
cv2.rectangle(overlay,
(x1 + shadow_offset, y1 + shadow_offset),
(x2 + shadow_offset, y2 + shadow_offset),
shadow_color, 2)
# Main bounding box with thinner lines
box_thickness = 2 if bbox_type == "person" else 1
# Draw main rectangle
cv2.rectangle(frame, (x1, y1), (x2, y2), color, box_thickness)
# Draw corner accents for premium look
corner_length = min(20, box_width // 4, box_height // 4)
accent_thickness = box_thickness
# Top-left corner
cv2.line(frame, (x1, y1), (x1 + corner_length, y1), color, accent_thickness)
cv2.line(frame, (x1, y1), (x1, y1 + corner_length), color, accent_thickness)
# Top-right corner
cv2.line(frame, (x2, y1), (x2 - corner_length, y1), color, accent_thickness)
cv2.line(frame, (x2, y1), (x2, y1 + corner_length), color, accent_thickness)
# Bottom-left corner
cv2.line(frame, (x1, y2), (x1 + corner_length, y2), color, accent_thickness)
cv2.line(frame, (x1, y2), (x1, y2 - corner_length), color, accent_thickness)
# Bottom-right corner
cv2.line(frame, (x2, y2), (x2 - corner_length, y2), color, accent_thickness)
cv2.line(frame, (x2, y2), (x2, y2 - corner_length), color, accent_thickness)
# Prepare label text
confidence_text = f"{confidence:.1%}"
main_text = f"{label}"
# Calculate text dimensions
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.5
thickness = 1
(main_w, main_h), _ = cv2.getTextSize(main_text, font, font_scale, thickness)
(conf_w, conf_h), _ = cv2.getTextSize(confidence_text, font, font_scale - 0.1, thickness - 1)
# Label background dimensions
label_height = max(main_h, conf_h) + 12
label_width = max(main_w, conf_w) + 16
# Position label (above box if space available, otherwise below)
if y1 - label_height - 5 > 0:
label_y = y1 - label_height - 5
else:
label_y = y2 + 5
label_x = x1
# Ensure label stays within frame
if label_x + label_width > frame.shape[1]:
label_x = frame.shape[1] - label_width - 5
if label_x < 0:
label_x = 5
# Draw label background with gradient effect
bg_color = colors['text_bg']
# Main background
cv2.rectangle(overlay,
(label_x, label_y),
(label_x + label_width, label_y + label_height),
bg_color, -1)
# Colored top border
cv2.rectangle(frame,
(label_x, label_y),
(label_x + label_width, label_y + 4),
color, -1)
# Add subtle border
cv2.rectangle(frame,
(label_x, label_y),
(label_x + label_width, label_y + label_height),
color, 1)
# Draw main text
text_y = label_y + main_h + 6
cv2.putText(frame, main_text,
(label_x + 8, text_y),
font, font_scale, colors['text_primary'], thickness)
# Draw confidence text
conf_y = text_y + conf_h + 4
cv2.putText(frame, confidence_text,
(label_x + 8, conf_y),
font, font_scale - 0.1, colors['text_secondary'], max(1, thickness - 1))
# Draw violation indicators for people (only if violations are provided)
if bbox_type == "person" and violations is not None and len(violations) > 0:
self._draw_violation_indicators(frame, overlay, x1, y1, x2, y2, violations, colors)
def _draw_violation_indicators(self, frame, overlay, x1, y1, x2, y2, violations, colors):
"""Draw violation indicators with premium styling."""
# Warning icon position (top-right of bounding box)
icon_size = 24
icon_x = x2 - icon_size - 5
icon_y = y1 + 5
# Draw warning background circle
cv2.circle(overlay, (icon_x + icon_size//2, icon_y + icon_size//2),
icon_size//2, colors['violation_bg'], -1)
cv2.circle(frame, (icon_x + icon_size//2, icon_y + icon_size//2),
icon_size//2, colors['violation_bg'], 2)
# Draw exclamation mark
center_x = icon_x + icon_size//2
center_y = icon_y + icon_size//2
# Exclamation line
cv2.line(frame, (center_x, center_y - 6), (center_x, center_y + 2),
colors['text_primary'], 2)
# Exclamation dot
cv2.circle(frame, (center_x, center_y + 5), 1, colors['text_primary'], -1)
# Draw violation list below the person if space allows
violation_text = "Missing: " + ", ".join(violations)
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.5
thickness = 1
(text_w, text_h), _ = cv2.getTextSize(violation_text, font, font_scale, thickness)
# Position violation text
viol_x = x1
viol_y = y2 + text_h + 8
# Ensure text stays within frame
if viol_y + text_h > frame.shape[0]:
viol_y = y1 - text_h - 8
if viol_x + text_w > frame.shape[1]:
viol_x = frame.shape[1] - text_w - 5
# Draw violation text background
padding = 4
cv2.rectangle(overlay,
(viol_x - padding, viol_y - text_h - padding),
(viol_x + text_w + padding, viol_y + padding),
colors['violation_bg'], -1)
# Draw violation text
cv2.putText(frame, violation_text,
(viol_x, viol_y),
font, font_scale, colors['text_primary'], thickness)
def _draw_statistics_overlay(self, frame, results, colors, width, height):
"""Draw statistics overlay with premium styling."""
# Statistics data
people_count = results.get('people_count', 0)
violations = results.get('violations', [])
violation_count = len(violations)
compliant_count = people_count - violation_count
compliance_rate = (compliant_count / max(people_count, 1)) * 100
# Statistics text
stats = [
f"People: {people_count}",
f"Compliant: {compliant_count}",
f"Violations: {violation_count}",
f"Compliance: {compliance_rate:.1f}%"
]
# Text properties
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.7
thickness = 2
# Calculate background size
max_text_width = 0
total_height = 0
line_heights = []
for text in stats:
(text_w, text_h), _ = cv2.getTextSize(text, font, font_scale, thickness)
max_text_width = max(max_text_width, text_w)
line_heights.append(text_h)
total_height += text_h + 8
# Background dimensions
bg_width = max_text_width + 24
bg_height = total_height + 16
# Position (top-left corner)
bg_x = 20
bg_y = 20
# Draw semi-transparent background
overlay = frame.copy()
cv2.rectangle(overlay,
(bg_x, bg_y),
(bg_x + bg_width, bg_y + bg_height),
colors['text_bg'], -1)
cv2.addWeighted(overlay, 0.8, frame, 0.2, 0, frame)
# Draw border
cv2.rectangle(frame,
(bg_x, bg_y),
(bg_x + bg_width, bg_y + bg_height),
colors['accent'], 2)
# Draw statistics text
current_y = bg_y + 24
for i, text in enumerate(stats):
# Choose color based on statistic type
if "Violations:" in text and violation_count > 0:
text_color = colors['person_violation']
elif "Compliant:" in text:
text_color = colors['person_compliant']
elif "Compliance:" in text:
if compliance_rate >= 80:
text_color = colors['person_compliant']
elif compliance_rate >= 60:
text_color = colors['safety_vest']
else:
text_color = colors['person_violation']
else:
text_color = colors['text_primary']
cv2.putText(frame, text,
(bg_x + 12, current_y),
font, font_scale, text_color, thickness)
current_y += line_heights[i] + 8
def get_model_classes(self) -> List[str]:
"""Get the list of classes the model can detect."""
return self._get_model_classes()
def test_detection(self, test_image_path: str = None):
"""Test the detector with a sample image or webcam."""
if test_image_path and os.path.exists(test_image_path):
frame = cv2.imread(test_image_path)
if frame is not None:
results = self.detect_safety_violations(frame)
output = self.draw_detections(frame, results)
print(f"Detected classes: {[d['class'] for d in results['detections']]}")
print(f"Available model classes: {self.get_model_classes()}")
cv2.imshow('PPE Detection Test', output)
cv2.waitKey(0)
cv2.destroyAllWindows()
return results
else:
print("Testing with webcam - press 'q' to quit")
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
if not ret:
break
results = self.detect_safety_violations(frame)
output = self.draw_detections(frame, results)
cv2.imshow('PPE Detection Test', output)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
def analyze_safety_compliance(self, detections: List[Dict]) -> Dict:
"""
Analyze safety compliance based on detected objects.
Args:
detections: List of detected objects
Returns:
Dictionary with compliance analysis
"""
people_detected = []
safety_equipment = []
# Separate people and safety equipment
for detection in detections:
if detection['class'].lower() == 'person':
people_detected.append(detection)
elif any(equipment in detection['class'].lower()
for equipment in ['helmet', 'hardhat', 'vest', 'gloves', 'glasses']):
safety_equipment.append(detection)
# Analyze compliance for each person
compliance_results = []
for person in people_detected:
person_bbox = person['bbox']
# Check for nearby safety equipment
nearby_equipment = self._find_nearby_equipment(person_bbox, safety_equipment)
# Determine missing equipment
required_equipment = ['hardhat', 'safety_vest']
missing_equipment = []
for equipment in required_equipment:
if not any(equipment.lower() in item['class'].lower()
for item in nearby_equipment):
missing_equipment.append(equipment)
compliance_results.append({
'person': person,
'nearby_equipment': nearby_equipment,
'missing_equipment': missing_equipment,
'is_compliant': len(missing_equipment) == 0,
'compliance_score': 1.0 - (len(missing_equipment) / len(required_equipment))
})
return {
'total_people': len(people_detected),
'compliant_people': sum(1 for result in compliance_results if result['is_compliant']),
'violations': sum(len(result['missing_equipment']) for result in compliance_results),
'compliance_results': compliance_results,
'overall_compliance_rate': (
sum(result['compliance_score'] for result in compliance_results) /
max(len(compliance_results), 1)
)
}
def _find_nearby_equipment(self, person_bbox: List[int], equipment_list: List[Dict],
proximity_threshold: float = 0.3) -> List[Dict]:
"""Find safety equipment near a person."""
nearby_equipment = []
person_center_x = (person_bbox[0] + person_bbox[2]) / 2
person_center_y = (person_bbox[1] + person_bbox[3]) / 2
for equipment in equipment_list:
equip_bbox = equipment['bbox']
equip_center_x = (equip_bbox[0] + equip_bbox[2]) / 2
equip_center_y = (equip_bbox[1] + equip_bbox[3]) / 2
# Calculate normalized distance
distance = np.sqrt((person_center_x - equip_center_x)**2 +
(person_center_y - equip_center_y)**2)
# Normalize by image diagonal (assuming standard frame size)
normalized_distance = distance / 1000 # Adjust based on typical frame size
if normalized_distance < proximity_threshold:
nearby_equipment.append(equipment)
return nearby_equipment
def draw_annotations(self, frame: np.ndarray, analysis: Dict) -> np.ndarray:
"""
Draw bounding boxes and annotations on the frame.
Args:
frame: Input frame
analysis: Safety compliance analysis results
Returns:
Annotated frame
"""
annotated_frame = frame.copy()
# Draw safety equipment
for equipment in analysis['safety_equipment']:
bbox = equipment['bbox']
cv2.rectangle(annotated_frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]),
self.colors['equipment'], 2)
label = f"{equipment.get('equipment_type', equipment['class'])}: {equipment['confidence']:.2f}"
cv2.putText(annotated_frame, label, (bbox[0], bbox[1] - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, self.colors['equipment'], 2)
# Draw people with compliance status
for result in analysis['compliance_results']:
person = result['person']
bbox = person['bbox']
# Choose color based on compliance
color = self.colors['person'] if result['is_compliant'] else self.colors['violation']
# Draw bounding box
cv2.rectangle(annotated_frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color, 3)
# Create status label
status = "COMPLIANT" if result['is_compliant'] else "VIOLATION"
confidence_text = f"Person: {person['confidence']:.2f}"
# Draw labels
cv2.putText(annotated_frame, status, (bbox[0], bbox[1] - 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, color, 2)
cv2.putText(annotated_frame, confidence_text, (bbox[0], bbox[1] - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# Show missing equipment
if result['missing_equipment']:
missing_text = f"Missing: {', '.join(result['missing_equipment'])}"
cv2.putText(annotated_frame, missing_text, (bbox[0], bbox[3] + 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, self.colors['violation'], 2)
# Draw summary statistics
summary_text = [
f"Total People: {analysis['total_people']}",
f"Compliant: {analysis['compliant_people']}",
f"Violations: {analysis['violations']}",
f"Compliance Rate: {(analysis['compliant_people']/max(analysis['total_people'],1)*100):.1f}%"
]
for i, text in enumerate(summary_text):
cv2.putText(annotated_frame, text, (10, 30 + i * 25),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
return annotated_frame
def capture_violation(self, frame: np.ndarray, violation_data: Dict) -> str:
"""
Capture and save an image when a safety violation is detected.
Args:
frame: Current frame
violation_data: Information about the violation
Returns:
Path to saved image
"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")[:-3]
filename = f"violation_{timestamp}.jpg"
filepath = os.path.join(self.violation_images_dir, filename)
# Save the frame
cv2.imwrite(filepath, frame)
# Save violation metadata
metadata = {
'timestamp': datetime.now().isoformat(),
'filename': filename,
'violation_data': violation_data
}
metadata_file = filepath.replace('.jpg', '_metadata.json')
with open(metadata_file, 'w') as f:
json.dump(metadata, f, indent=2)
self.violations.append(metadata)
return filepath
def process_frame(self, frame: np.ndarray) -> Tuple[np.ndarray, Dict]:
"""
Process a single frame for safety monitoring.
Args:
frame: Input video frame
Returns:
Tuple of (annotated_frame, analysis_results)
"""
# Detect objects and get safety violations
results = self.detect_safety_violations(frame)
# Draw detections on frame using the main drawing method
annotated_frame = self.draw_detections(frame, results)
return annotated_frame, {
'detections': results['detections'],
'people_count': results['people_count'],
'safety_equipment': results['safety_equipment'],
'violations': results['violations'],
'violation_summary': self.get_violation_summary(),
'frame_stats': {
'processing_time': results['processing_time'],
'fps': results['fps'],
'detection_count': len(results['detections'])
}
}
def get_violation_summary(self) -> Dict:
"""Get a summary of recent violations."""
# This would typically connect to a database or log file
# For now, return a placeholder
return {
'total_violations_today': 0,
'most_common_violation': 'missing_hardhat',
'compliance_trend': [] # Could track compliance over time
}
if __name__ == "__main__":
# Test the detector
detector = SafetyDetector()
print("Available classes:", detector.get_model_classes())
detector.test_detection() |