File size: 3,836 Bytes
a99c482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import streamlit as st
from langchain_community.document_loaders import TextLoader, PyPDFLoader, WebBaseLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
import os
import tempfile
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_PROJECT"]="Multi Loader RAG"


# Streamlit app title
st.title("Multi Loader RAG")

# File upload and web link input
st.header("Upload Documents")
text_file = st.file_uploader("Upload a Text File", type=["txt"])
pdf_file = st.file_uploader("Upload a PDF File", type=["pdf"])
web_link = st.text_input("Enter a Web URL")

# Load documents function
def load_documents(text_file, pdf_file, web_link):
    docs = []
    
    # Load text file
    if text_file is not None:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".txt") as tmp_file:
            tmp_file.write(text_file.getvalue())
            tmp_file_path = tmp_file.name
        text_loader = TextLoader(tmp_file_path)
        docs.extend(text_loader.load())
        os.remove(tmp_file_path)
    
    # Load PDF file
    if pdf_file is not None:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
            tmp_file.write(pdf_file.getvalue())
            tmp_file_path = tmp_file.name
        pdf_loader = PyPDFLoader(tmp_file_path)
        docs.extend(pdf_loader.load())
        os.remove(tmp_file_path)
    
    # Load web content
    if web_link:
        web_loader = WebBaseLoader([web_link])
        docs.extend(web_loader.load())
    
    return docs

# Split documents function
def split_documents(docs, chunk_size, chunk_overlap):
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=chunk_size,
        chunk_overlap=chunk_overlap
    )
    return text_splitter.split_documents(docs)

# Create FAISS vector store function
def create_vector_store(splits):
    embeddings = OpenAIEmbeddings()
    vectorstore = FAISS.from_documents(splits, embeddings)
    return vectorstore

# Main app logic
if st.button("Process Documents"):
    if not (text_file or pdf_file or web_link):
        st.error("Please upload at least one document or provide a web link.")
    else:
        with st.spinner("Processing documents..."):
            # Load documents
            documents = load_documents(text_file, pdf_file, web_link)
            
            # Split documents
            splits = split_documents(documents, 1000, 300)
            
            # Create FAISS vector store
            st.session_state.vector_store = create_vector_store(splits)
            
            st.success("Documents processed and FAISS vector store created!")

st.header("Get Summary/Answer")
query = st.text_input("Enter your query")

if st.button("Search"):
    if st.session_state.vector_store is None:
        st.error("Please process documents first.")
    elif not query:
        st.error("Please enter a query.")
    else:
        with st.spinner("Searching..."): 
            # Create retriever and chain
            retriever = st.session_state.vector_store.as_retriever(
                search_type="similarity",
                search_kwargs={"k": 5}
            )
            llm = OpenAI(temperature=0.6)
            qa_chain = RetrievalQA.from_chain_type(
                llm=llm,
                chain_type="stuff",
                retriever=retriever,
                return_source_documents=True
            )

            # Execute query
            result = qa_chain({"query": query})

            # Display the result
            st.markdown("### Answer:")
            st.write(result["result"])