import streamlit as st from langchain_community.document_loaders import TextLoader, PyPDFLoader, WebBaseLoader from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_openai import OpenAIEmbeddings from langchain_community.vectorstores import FAISS from langchain.llms import OpenAI from langchain.chains import RetrievalQA import os import tempfile from dotenv import load_dotenv # Load environment variables load_dotenv() os.environ["LANGCHAIN_TRACING_V2"] = "true" os.environ["LANGCHAIN_PROJECT"]="Multi Loader RAG" # Streamlit app title st.title("Multi Loader RAG") # File upload and web link input st.header("Upload Documents") text_file = st.file_uploader("Upload a Text File", type=["txt"]) pdf_file = st.file_uploader("Upload a PDF File", type=["pdf"]) web_link = st.text_input("Enter a Web URL") # Load documents function def load_documents(text_file, pdf_file, web_link): docs = [] # Load text file if text_file is not None: with tempfile.NamedTemporaryFile(delete=False, suffix=".txt") as tmp_file: tmp_file.write(text_file.getvalue()) tmp_file_path = tmp_file.name text_loader = TextLoader(tmp_file_path) docs.extend(text_loader.load()) os.remove(tmp_file_path) # Load PDF file if pdf_file is not None: with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file: tmp_file.write(pdf_file.getvalue()) tmp_file_path = tmp_file.name pdf_loader = PyPDFLoader(tmp_file_path) docs.extend(pdf_loader.load()) os.remove(tmp_file_path) # Load web content if web_link: web_loader = WebBaseLoader([web_link]) docs.extend(web_loader.load()) return docs # Split documents function def split_documents(docs, chunk_size, chunk_overlap): text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) return text_splitter.split_documents(docs) # Create FAISS vector store function def create_vector_store(splits): embeddings = OpenAIEmbeddings() vectorstore = FAISS.from_documents(splits, embeddings) return vectorstore # Main app logic if st.button("Process Documents"): if not (text_file or pdf_file or web_link): st.error("Please upload at least one document or provide a web link.") else: with st.spinner("Processing documents..."): # Load documents documents = load_documents(text_file, pdf_file, web_link) # Split documents splits = split_documents(documents, 1000, 300) # Create FAISS vector store st.session_state.vector_store = create_vector_store(splits) st.success("Documents processed and FAISS vector store created!") st.header("Get Summary/Answer") query = st.text_input("Enter your query") if st.button("Search"): if st.session_state.vector_store is None: st.error("Please process documents first.") elif not query: st.error("Please enter a query.") else: with st.spinner("Searching..."): # Create retriever and chain retriever = st.session_state.vector_store.as_retriever( search_type="similarity", search_kwargs={"k": 5} ) llm = OpenAI(temperature=0.6) qa_chain = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True ) # Execute query result = qa_chain({"query": query}) # Display the result st.markdown("### Answer:") st.write(result["result"])