Spaces:
Configuration error
Configuration error
File size: 15,769 Bytes
654fd3c 8ca9434 654fd3c 9f428dc 8ca9434 654fd3c 58dd2b7 8ca9434 9f428dc 654fd3c 8ca9434 ff56add 654fd3c 1e48e9e 654fd3c 69d2cf8 654fd3c 438c26d 654fd3c ff56add 654fd3c 8ca9434 654fd3c 58dd2b7 654fd3c 58dd2b7 654fd3c 8ca9434 654fd3c 8ca9434 654fd3c 8ca9434 654fd3c 8ca9434 654fd3c 8ca9434 654fd3c 8ca9434 654fd3c 8ca9434 654fd3c 8ca9434 654fd3c 8ca9434 654fd3c 8ca9434 654fd3c 8ca9434 654fd3c 8ca9434 654fd3c 8ca9434 654fd3c 8ca9434 654fd3c 8ca9434 654fd3c 58dd2b7 654fd3c 58dd2b7 654fd3c 438c26d 8ca9434 654fd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
import streamlit as st
import torch
import torch.nn as nn
from transformers import AutoTokenizer
import yfinance as yf
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import time
import logging
# Configurazione pagina
st.set_page_config(
page_title="Financial Transformer Analysis",
page_icon="📈",
layout="wide",
initial_sidebar_state="expanded"
)
# Configurazione logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Import delle classi dal modulo principale
@st.cache_resource
def load_model_components():
"""Carica i componenti del modello con cache"""
class MultiLayerSemanticExtractor(nn.Module):
def __init__(self, input_dim: int, hidden_dims: list, output_dim: int):
super().__init__()
self.layers = nn.ModuleList()
prev_dim = input_dim
for hidden_dim in hidden_dims:
self.layers.append(nn.Sequential(
nn.Linear(prev_dim, hidden_dim),
nn.LayerNorm(hidden_dim),
nn.ReLU(),
nn.Dropout(0.1)
))
prev_dim = hidden_dim
self.output_layer = nn.Linear(prev_dim, output_dim)
def forward(self, x):
layer_outputs = []
for layer in self.layers:
x = layer(x)
layer_outputs.append(x)
final_output = self.output_layer(x)
return final_output, layer_outputs
class FinancialTransformer(nn.Module):
def __init__(self, vocab_size=10000, d_model=512, nhead=8, num_layers=6,
feature_dim=6, semantic_dims=[256, 128, 64]):
super().__init__()
self.d_model = d_model
self.feature_dim = feature_dim
self.embedding = nn.Embedding(vocab_size, d_model)
self.pos_encoding = nn.Parameter(torch.randn(1000, d_model))
encoder_layer = nn.TransformerEncoderLayer(
d_model=d_model, nhead=nhead, dim_feedforward=d_model * 4,
dropout=0.1, batch_first=True
)
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers)
self.semantic_extractor = MultiLayerSemanticExtractor(
input_dim=feature_dim, hidden_dims=semantic_dims, output_dim=d_model
)
self.feature_projection = nn.Linear(d_model, d_model)
self.price_predictor = nn.Linear(d_model, 1)
self.trend_classifier = nn.Linear(d_model, 3)
self.volatility_predictor = nn.Linear(d_model, 1)
def forward(self, text_tokens, financial_features, attention_mask=None):
batch_size, seq_len = text_tokens.shape
text_emb = self.embedding(text_tokens)
pos_emb = self.pos_encoding[:seq_len].unsqueeze(0).repeat(batch_size, 1, 1)
text_emb = text_emb + pos_emb
financial_emb, semantic_layers = self.semantic_extractor(financial_features)
financial_emb = self.feature_projection(financial_emb)
if len(financial_emb.shape) == 2:
financial_emb = financial_emb.unsqueeze(1).repeat(1, seq_len, 1)
combined_emb = text_emb + financial_emb
transformer_output = self.transformer(combined_emb, src_key_padding_mask=attention_mask)
if attention_mask is not None:
mask_expanded = attention_mask.unsqueeze(-1).expand_as(transformer_output)
transformer_output = transformer_output * mask_expanded
pooled_output = transformer_output.sum(1) / mask_expanded.sum(1)
else:
pooled_output = transformer_output.mean(1)
predictions = {
'price_change': self.price_predictor(pooled_output),
'trend': self.trend_classifier(pooled_output),
'volatility': self.volatility_predictor(pooled_output),
'semantic_layers': semantic_layers,
'transformer_output': transformer_output
}
return predictions
# Carica tokenizer
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Inizializza modello
model = FinancialTransformer(
vocab_size=tokenizer.vocab_size,
d_model=512,
nhead=8,
num_layers=6,
feature_dim=6,
semantic_dims=[256, 128, 64]
)
return model, tokenizer
def calculate_technical_indicators(data):
"""Calcola indicatori tecnici"""
indicators = {}
# Media mobile semplice
indicators['sma_20'] = data['Close'].rolling(window=20).mean().fillna(data['Close'].mean())
indicators['sma_50'] = data['Close'].rolling(window=50).mean().fillna(data['Close'].mean())
# RSI
delta = data['Close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
rs = gain / loss
indicators['rsi'] = 100 - (100 / (1 + rs)).fillna(50)
# Volatilità
indicators['volatility'] = data['Close'].rolling(window=20).std().fillna(data['Close'].std())
# Volume relativo
indicators['volume_ratio'] = (data['Volume'] / data['Volume'].rolling(window=20).mean()).fillna(1)
# Trend
indicators['price_change'] = data['Close'].pct_change().fillna(0)
return indicators
def extract_semantic_features(data, indicators):
"""Estrae features semantiche"""
features = []
# Normalizza i prezzi
price_norm = (data['Close'] - data['Close'].mean()) / (data['Close'].std() + 1e-8)
features.append(price_norm.values)
# Aggiungi indicatori normalizzati
for key, values in indicators.items():
if key == 'rsi':
normalized = (values - 50) / 50
else:
mean_val = values.mean()
std_val = values.std()
normalized = (values - mean_val) / (std_val + 1e-8)
features.append(normalized.values)
feature_matrix = np.column_stack(features)
return feature_matrix
def create_market_context(symbol, data):
"""Crea contesto testuale"""
if len(data) < 2:
return f"Stock {symbol} trading data available."
latest = data.iloc[-1]
prev = data.iloc[-2]
change = ((latest['Close'] - prev['Close']) / prev['Close']) * 100
direction = "increased" if change > 0 else "decreased"
context = f"Stock {symbol} has {direction} by {abs(change):.2f}% " \
f"trading at ${latest['Close']:.2f} with volume {latest['Volume']:,}. " \
f"High: ${latest['High']:.2f}, Low: ${latest['Low']:.2f}."
return context
def analyze_symbol(symbol, model, tokenizer):
"""Analizza un simbolo"""
try:
# Recupera dati
ticker = yf.Ticker(symbol)
data = ticker.history(period="5d", interval="1m")
if data.empty:
return None
# Calcola indicatori
indicators = calculate_technical_indicators(data)
# Estrai features
features = extract_semantic_features(data, indicators)
# Crea contesto
context = create_market_context(symbol, data)
# Tokenizza
tokens = tokenizer(
context, padding=True, truncation=True,
max_length=512, return_tensors="pt"
)
# Features finanziarie
financial_features = torch.FloatTensor(features[-1:])
# Predizione
model.eval()
with torch.no_grad():
predictions = model(
tokens['input_ids'],
financial_features,
attention_mask=tokens['attention_mask']
)
# Interpreta risultati
price_change = predictions['price_change'].item()
trend_probs = torch.softmax(predictions['trend'], dim=1)
volatility = predictions['volatility'].item()
trend_labels = ['Down', 'Stable', 'Up']
predicted_trend = trend_labels[trend_probs.argmax().item()]
return {
'symbol': symbol,
'current_price': data['Close'].iloc[-1],
'predicted_price_change': price_change,
'predicted_trend': predicted_trend,
'trend_confidence': trend_probs.max().item(),
'predicted_volatility': volatility,
'market_context': context,
'data': data,
'indicators': indicators
}
except Exception as e:
st.error(f"Errore nell'analisi di {symbol}: {str(e)}")
return None
def create_price_chart(data, symbol):
"""Crea grafico dei prezzi"""
fig = make_subplots(
rows=2, cols=1,
shared_xaxes=True,
vertical_spacing=0.1,
subplot_titles=(f'{symbol} Price', 'Volume'),
row_width=[0.7, 0.3]
)
# Candlestick
fig.add_trace(
go.Candlestick(
x=data.index,
open=data['Open'],
high=data['High'],
low=data['Low'],
close=data['Close'],
name=symbol
),
row=1, col=1
)
# Volume
fig.add_trace(
go.Bar(
x=data.index,
y=data['Volume'],
name='Volume',
marker_color='rgba(0,100,80,0.6)'
),
row=2, col=1
)
fig.update_layout(
title=f'{symbol} Real-Time Analysis',
xaxis_title='Time',
yaxis_title='Price ($)',
height=600,
showlegend=False
)
return fig
def create_indicators_chart(data, indicators):
"""Crea grafico degli indicatori"""
fig = make_subplots(
rows=2, cols=2,
subplot_titles=('RSI', 'Moving Averages', 'Volatility', 'Volume Ratio')
)
# RSI
fig.add_trace(
go.Scatter(x=data.index, y=indicators['rsi'], name='RSI'),
row=1, col=1
)
fig.add_hline(y=70, line_dash="dash", line_color="red", row=1, col=1)
fig.add_hline(y=30, line_dash="dash", line_color="green", row=1, col=1)
# Moving Averages
fig.add_trace(
go.Scatter(x=data.index, y=data['Close'], name='Close', line=dict(color='blue')),
row=1, col=2
)
fig.add_trace(
go.Scatter(x=data.index, y=indicators['sma_20'], name='SMA 20', line=dict(color='orange')),
row=1, col=2
)
fig.add_trace(
go.Scatter(x=data.index, y=indicators['sma_50'], name='SMA 50', line=dict(color='red')),
row=1, col=2
)
# Volatility
fig.add_trace(
go.Scatter(x=data.index, y=indicators['volatility'], name='Volatility'),
row=2, col=1
)
# Volume Ratio
fig.add_trace(
go.Scatter(x=data.index, y=indicators['volume_ratio'], name='Volume Ratio'),
row=2, col=2
)
fig.add_hline(y=1, line_dash="dash", line_color="gray", row=2, col=2)
fig.update_layout(height=600, showlegend=False)
return fig
# Interfaccia principale
def main():
st.title("📈 Financial Transformer Real-Time Analysis")
st.markdown("---")
# Sidebar
st.sidebar.header("⚙️ Configuration")
# Selezione simboli
popular_symbols = ['AAPL', 'GOOGL', 'MSFT', 'TSLA', 'AMZN', 'META', 'NVDA']
selected_symbols = st.sidebar.multiselect(
"Select Symbols",
popular_symbols,
default=['AAPL', 'GOOGL', 'MSFT']
)
# Simbolo custom
custom_symbol = st.sidebar.text_input("Custom Symbol (optional)")
if custom_symbol:
selected_symbols.append(custom_symbol.upper())
# Parametri
st.sidebar.subheader("Parameters")
update_interval = st.sidebar.slider("Update Interval (seconds)", 30, 300, 60)
show_charts = st.sidebar.checkbox("Show Charts", True)
show_indicators = st.sidebar.checkbox("Show Technical Indicators", True)
# Carica modello
with st.spinner("Loading model..."):
model, tokenizer = load_model_components()
# Pulsante di analisi
if st.sidebar.button("🚀 Start Analysis"):
if not selected_symbols:
st.error("Please select at least one symbol")
return
# Placeholder per risultati
results_placeholder = st.empty()
charts_placeholder = st.empty()
# Loop di analisi
for iteration in range(10): # Limitato per demo
st.subheader(f"Analysis Iteration {iteration + 1}")
results = []
# Analizza ogni simbolo
for symbol in selected_symbols:
with st.spinner(f"Analyzing {symbol}..."):
result = analyze_symbol(symbol, model, tokenizer)
if result:
results.append(result)
if results:
# Mostra risultati in tabella
results_df = pd.DataFrame([{
'Symbol': r['symbol'],
'Current Price': f"${r['current_price']:.2f}",
'Predicted Change': f"{r['predicted_price_change']:.4f}",
'Trend': r['predicted_trend'],
'Confidence': f"{r['trend_confidence']:.2f}",
'Volatility': f"{r['predicted_volatility']:.4f}"
} for r in results])
st.table(results_df)
# Mostra grafici se richiesto
if show_charts:
cols = st.columns(len(results))
for i, result in enumerate(results):
with cols[i]:
st.plotly_chart(
create_price_chart(result['data'], result['symbol']),
use_container_width=True
)
# Mostra indicatori tecnici
if show_indicators:
st.subheader("📊 Technical Indicators")
for result in results:
st.subheader(f"{result['symbol']} Indicators")
st.plotly_chart(
create_indicators_chart(result['data'], result['indicators']),
use_container_width=True
)
# Attendi prossimo update
if iteration < 9: # Non aspettare nell'ultima iterazione
time.sleep(update_interval)
# Informazioni
st.sidebar.markdown("---")
st.sidebar.markdown("### ℹ️ About")
st.sidebar.markdown("""
Questo strumento utilizza un transformer multi-layer per analizzare
dati finanziari in tempo reale e generare predizioni.
**Features:**
- Analisi semantica multi-layer
- Indicatori tecnici avanzati
- Predizioni trend e volatilità
- Visualizzazioni interattive
""")
# Disclaimer
st.sidebar.markdown("---")
st.sidebar.markdown("### ⚠️ Disclaimer")
st.sidebar.markdown("""
**ATTENZIONE**: Questo strumento è solo per scopi educativi.
Non costituisce consulenza finanziaria. Gli investimenti comportano rischi.
""")
if __name__ == "__main__":
main() |