File size: 16,122 Bytes
31f371a 9743f5c 31f371a 1fe9127 31f371a ee732a9 31f371a 9743f5c 31f371a 7b8b9f8 31f371a 7b8b9f8 31f371a 7b8b9f8 31f371a 7b8b9f8 31f371a 7b8b9f8 31f371a b95ca5f ee732a9 7b8b9f8 31f371a 7b8b9f8 ee732a9 7b8b9f8 31f371a ee732a9 7b8b9f8 ee732a9 7b8b9f8 31f371a ee732a9 7b8b9f8 31f371a 7b8b9f8 31f371a 7b8b9f8 31f371a 75f5073 31f371a d544279 31f371a d544279 31f371a d544279 31f371a d544279 31f371a b95ca5f 31f371a 7b8b9f8 31f371a 7b8b9f8 31f371a d544279 31f371a 7b8b9f8 31f371a 7b8b9f8 31f371a 7b8b9f8 31f371a 7b8b9f8 31f371a d544279 31f371a 7b8b9f8 31f371a 7b8b9f8 31f371a d544279 31f371a 75f5073 31f371a 75f5073 31f371a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import numpy as np
import requests
import re
import json
import os
from collections import Counter
from typing import List, Tuple, Dict
import random
import math
try:
from datasets import load_dataset
except ImportError:
print("datasets non disponibile, usando solo dati sintetici")
load_dataset = None
try:
from transformers import AutoTokenizer
except ImportError:
print("transformers non disponibile, usando tokenizer personalizzato")
AutoTokenizer = None
import gradio as gr
class SelfOrganizingTokenizer:
def __init__(self, vocab_size=30000):
self.vocab_size = vocab_size
self.token_to_id = {'<PAD>': 0, '<UNK>': 1, '<BOS>': 2, '<EOS>': 3}
self.id_to_token = {0: '<PAD>', 1: '<UNK>', 2: '<BOS>', 3: '<EOS>'}
self.word_freq = Counter()
def build_vocab(self, texts):
for text in texts:
words = re.findall(r'\w+|[^\w\s]', text.lower())
self.word_freq.update(words)
most_common = self.word_freq.most_common(self.vocab_size - 4)
for i, (word, _) in enumerate(most_common):
idx = i + 4
self.token_to_id[word] = idx
self.id_to_token[idx] = word
def encode(self, text):
words = re.findall(r'\w+|[^\w\s]', text.lower())
return [self.token_to_id.get(word, 1) for word in words]
def decode(self, ids):
return ' '.join([self.id_to_token.get(id, '<UNK>') for id in ids])
class SelfOrganizingAttention(nn.Module):
def __init__(self, embed_dim, num_heads):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
self.qkv = nn.Linear(embed_dim, embed_dim * 3)
self.proj = nn.Linear(embed_dim, embed_dim)
self.adaptation_layer = nn.Linear(embed_dim, embed_dim)
def forward(self, x):
B, T, C = x.shape
qkv = self.qkv(x).reshape(B, T, 3, self.num_heads, self.head_dim)
q, k, v = qkv.permute(2, 0, 3, 1, 4)
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = torch.softmax(att, dim=-1)
y = att @ v
y = y.transpose(1, 2).reshape(B, T, C)
y = self.proj(y)
# Auto-organizzazione
adaptation = torch.tanh(self.adaptation_layer(x))
y = y * (1 + 0.1 * adaptation)
return y
class SelfOrganizingTransformer(nn.Module):
def __init__(self, vocab_size, embed_dim=512, num_heads=8, num_layers=6, max_len=1024):
super().__init__()
self.embed_dim = embed_dim
self.tok_embed = nn.Embedding(vocab_size, embed_dim)
self.pos_embed = nn.Embedding(max_len, embed_dim)
self.layers = nn.ModuleList([
nn.ModuleDict({
'attn': SelfOrganizingAttention(embed_dim, num_heads),
'norm1': nn.LayerNorm(embed_dim),
'mlp': nn.Sequential(
nn.Linear(embed_dim, 4 * embed_dim),
nn.GELU(),
nn.Linear(4 * embed_dim, embed_dim),
),
'norm2': nn.LayerNorm(embed_dim),
'adaptation': nn.Linear(embed_dim, embed_dim)
}) for _ in range(num_layers)
])
self.ln_f = nn.LayerNorm(embed_dim)
self.head = nn.Linear(embed_dim, vocab_size)
# Parametri per auto-organizzazione
self.plasticity = nn.Parameter(torch.ones(num_layers) * 0.01)
def forward(self, x):
B, T = x.shape
pos = torch.arange(0, T, dtype=torch.long, device=x.device)
x = self.tok_embed(x) + self.pos_embed(pos)
for i, layer in enumerate(self.layers):
residual = x
x = layer['norm1'](x)
x = layer['attn'](x)
# Auto-organizzazione adattiva
adaptation = torch.tanh(layer['adaptation'](x))
x = residual + x * (1 + self.plasticity[i] * adaptation)
residual = x
x = layer['norm2'](x)
x = layer['mlp'](x)
x = residual + x
x = self.ln_f(x)
logits = self.head(x)
return logits
class TextDataset(Dataset):
def __init__(self, texts, tokenizer, max_len=512):
self.texts = texts
self.tokenizer = tokenizer
self.max_len = max_len
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
text = self.texts[idx]
tokens = self.tokenizer.encode(text)
if len(tokens) < self.max_len:
tokens = tokens + [0] * (self.max_len - len(tokens))
else:
tokens = tokens[:self.max_len]
return torch.tensor(tokens[:-1]), torch.tensor(tokens[1:])
class AITrainer:
def __init__(self):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.tokenizer = None
self.model = None
self.datasets = []
def load_public_datasets(self):
"""Carica dataset pubblici senza API key"""
datasets = []
if load_dataset:
try:
# Wikipedia in italiano
wiki = load_dataset("wikipedia", "20220301.it", split="train[:1000]", trust_remote_code=True)
for item in wiki:
if len(item['text']) > 100:
datasets.append(item['text'])
print(f"Caricati {len(datasets)} esempi da Wikipedia")
except Exception as e:
print(f"Wikipedia non disponibile: {e}")
try:
# Common Crawl
cc = load_dataset("cc100", lang="it", split="train[:500]", trust_remote_code=True)
for item in cc:
if len(item['text']) > 100:
datasets.append(item['text'])
print(f"Caricati esempi da Common Crawl")
except Exception as e:
print(f"Common Crawl non disponibile: {e}")
# Dataset di testo semplice da URL pubblici
urls = [
"https://www.gutenberg.org/files/2000/2000-0.txt", # Divina Commedia
]
for url in urls:
try:
response = requests.get(url, timeout=10)
if response.status_code == 200:
text = response.text
# Filtra contenuto utile
lines = text.split('\n')
filtered_lines = [line.strip() for line in lines if len(line.strip()) > 50]
chunks = filtered_lines[:1000] # Primi 1000 chunk
datasets.extend(chunks)
print(f"Caricati {len(chunks)} chunk da {url}")
except Exception as e:
print(f"Errore caricamento {url}: {e}")
continue
# Genera dati sintetici
print("Generazione dati sintetici...")
synthetic_texts = self.generate_synthetic_data(8000)
datasets.extend(synthetic_texts)
self.datasets = datasets[:10000] # Limita a 10k esempi
print(f"Dataset finale: {len(self.datasets)} esempi")
def generate_synthetic_data(self, num_samples):
"""Genera dati sintetici per il training"""
templates = [
"Il {sostantivo} {verbo} nel {luogo} durante {tempo}.",
"La {sostantivo} è molto {aggettivo} e {verbo} sempre.",
"Quando {verbo}, il {sostantivo} diventa {aggettivo}.",
"Nel {luogo}, la {sostantivo} {verbo} con {sostantivo}.",
"Il {aggettivo} {sostantivo} {verbo} ogni {tempo}."
]
sostantivi = ["gatto", "cane", "casa", "albero", "fiume", "montagna", "libro", "sole"]
verbi = ["corre", "salta", "vola", "nuota", "dorme", "mangia", "gioca", "legge"]
aggettivi = ["bello", "grande", "piccolo", "veloce", "lento", "intelligente", "forte"]
luoghi = ["parco", "giardino", "bosco", "città", "mare", "cielo", "campo"]
tempi = ["giorno", "notte", "mattina", "sera", "inverno", "estate", "primavera"]
texts = []
for _ in range(num_samples):
template = random.choice(templates)
text = template.format(
sostantivo=random.choice(sostantivi),
verbo=random.choice(verbi),
aggettivo=random.choice(aggettivi),
luogo=random.choice(luoghi),
tempo=random.choice(tempi)
)
texts.append(text)
return texts
def setup_model(self, vocab_size=30000):
"""Configura il modello transformer auto-organizzante"""
self.model = SelfOrganizingTransformer(
vocab_size=vocab_size,
embed_dim=512,
num_heads=8,
num_layers=6,
max_len=512
).to(self.device)
# Calcola parametri
total_params = sum(p.numel() for p in self.model.parameters())
print(f"Modello creato con {total_params:,} parametri")
def train(self, epochs=5, batch_size=16, lr=3e-4):
"""Training del modello"""
print("Inizializzazione tokenizer...")
self.tokenizer = SelfOrganizingTokenizer()
self.tokenizer.build_vocab(self.datasets)
print("Configurazione modello...")
self.setup_model(len(self.tokenizer.token_to_id))
print("Preparazione dataset...")
dataset = TextDataset(self.datasets, self.tokenizer)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
optimizer = optim.AdamW(self.model.parameters(), lr=lr, weight_decay=0.01)
criterion = nn.CrossEntropyLoss(ignore_index=0)
print("Inizio training...")
self.model.train()
for epoch in range(epochs):
total_loss = 0
num_batches = 0
for batch_idx, (input_ids, target_ids) in enumerate(dataloader):
input_ids = input_ids.to(self.device)
target_ids = target_ids.to(self.device)
optimizer.zero_grad()
logits = self.model(input_ids)
loss = criterion(logits.reshape(-1, logits.size(-1)), target_ids.reshape(-1))
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
optimizer.step()
total_loss += loss.item()
num_batches += 1
if batch_idx % 50 == 0:
print(f"Epoch {epoch+1}/{epochs}, Batch {batch_idx}, Loss: {loss.item():.4f}")
avg_loss = total_loss / num_batches
print(f"Epoch {epoch+1}/{epochs} completata. Loss media: {avg_loss:.4f}")
# Test generazione
if epoch % 2 == 0:
self.test_generation("Il gatto")
print("Training completato!")
self.save_model()
def test_generation(self, prompt, max_length=50):
"""Test di generazione testo"""
self.model.eval()
with torch.no_grad():
tokens = self.tokenizer.encode(prompt)
input_ids = torch.tensor([tokens]).to(self.device)
for _ in range(max_length):
logits = self.model(input_ids)
next_token = torch.argmax(logits[0, -1, :], dim=-1)
input_ids = torch.cat([input_ids, next_token.unsqueeze(0).unsqueeze(0)], dim=1)
if next_token.item() == self.tokenizer.token_to_id.get('<EOS>', 3):
break
generated = self.tokenizer.decode(input_ids[0].cpu().numpy())
print(f"Generazione: {generated}")
self.model.train()
return generated
def save_model(self):
"""Salva il modello"""
torch.save({
'model_state_dict': self.model.state_dict(),
'tokenizer': self.tokenizer,
'vocab_size': len(self.tokenizer.token_to_id)
}, 'ai_model.pth')
print("Modello salvato in ai_model.pth")
def load_model(self):
"""Carica il modello"""
if os.path.exists('ai_model.pth'):
checkpoint = torch.load('ai_model.pth', map_location=self.device)
self.tokenizer = checkpoint['tokenizer']
self.setup_model(checkpoint['vocab_size'])
self.model.load_state_dict(checkpoint['model_state_dict'])
print("Modello caricato da ai_model.pth")
return True
return False
def generate_text(self, prompt, max_length=100, temperature=0.8):
"""Genera testo dal prompt"""
if not self.model or not self.tokenizer:
return "Modello non caricato. Esegui prima il training."
self.model.eval()
with torch.no_grad():
tokens = self.tokenizer.encode(prompt)
input_ids = torch.tensor([tokens]).to(self.device)
for _ in range(max_length):
logits = self.model(input_ids)
logits = logits[0, -1, :] / temperature
probs = torch.softmax(logits, dim=-1)
next_token = torch.multinomial(probs, 1)
input_ids = torch.cat([input_ids, next_token.unsqueeze(0)], dim=1)
if next_token.item() == self.tokenizer.token_to_id.get('<EOS>', 3):
break
generated = self.tokenizer.decode(input_ids[0].cpu().numpy())
return generated
def create_interface():
"""Crea interfaccia Gradio"""
trainer = AITrainer()
def start_training():
try:
trainer.load_public_datasets()
trainer.train(epochs=3)
return "Training completato con successo!"
except Exception as e:
return f"Errore durante il training: {str(e)}"
def generate(prompt, max_len, temp):
try:
if not trainer.load_model():
return "Modello non trovato. Esegui prima il training."
result = trainer.generate_text(prompt, max_len, temp)
return result
except Exception as e:
return f"Errore nella generazione: {str(e)}"
with gr.Blocks(title="AI Token Trainer") as demo:
gr.Markdown("# AI Training System - Predizione Token")
with gr.Tab("Training"):
train_btn = gr.Button("Avvia Training", variant="primary")
train_output = gr.Textbox(label="Stato Training", lines=5)
train_btn.click(start_training, outputs=train_output)
with gr.Tab("Generazione"):
prompt_input = gr.Textbox(label="Prompt", placeholder="Inserisci il testo di partenza...")
max_len_slider = gr.Slider(10, 200, value=50, label="Lunghezza massima")
temp_slider = gr.Slider(0.1, 2.0, value=0.8, label="Temperatura")
generate_btn = gr.Button("Genera Testo", variant="primary")
output_text = gr.Textbox(label="Testo Generato", lines=10)
generate_btn.click(
generate,
inputs=[prompt_input, max_len_slider, temp_slider],
outputs=output_text
)
return demo
if __name__ == "__main__":
# Training automatico se richiesto
if len(os.sys.argv) > 1 and os.sys.argv[1] == "train":
trainer = AITrainer()
trainer.load_public_datasets()
trainer.train()
else:
# Interfaccia Gradio
demo = create_interface()
demo.launch(share=True) |