File size: 16,122 Bytes
31f371a
 
 
 
 
9743f5c
 
31f371a
 
 
 
1fe9127
31f371a
ee732a9
 
 
 
 
 
 
 
 
 
31f371a
9743f5c
31f371a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b8b9f8
31f371a
 
 
 
 
 
 
 
 
 
 
 
 
7b8b9f8
31f371a
 
 
7b8b9f8
31f371a
 
 
 
7b8b9f8
31f371a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b8b9f8
31f371a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b95ca5f
ee732a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b8b9f8
31f371a
 
 
 
 
 
7b8b9f8
ee732a9
7b8b9f8
31f371a
ee732a9
 
 
 
 
 
 
 
7b8b9f8
 
ee732a9
 
 
 
7b8b9f8
31f371a
ee732a9
7b8b9f8
31f371a
 
 
 
 
 
 
 
 
7b8b9f8
31f371a
 
 
 
 
7b8b9f8
31f371a
 
 
 
 
 
 
 
 
 
 
 
 
75f5073
31f371a
 
 
 
 
 
 
 
 
d544279
31f371a
 
 
d544279
31f371a
 
 
 
 
d544279
31f371a
 
d544279
31f371a
 
 
b95ca5f
31f371a
 
 
 
 
 
 
 
 
7b8b9f8
31f371a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b8b9f8
31f371a
 
d544279
31f371a
 
 
7b8b9f8
31f371a
 
 
 
 
 
 
 
 
7b8b9f8
31f371a
 
 
 
 
 
 
7b8b9f8
31f371a
 
 
 
 
7b8b9f8
31f371a
 
 
 
 
 
 
 
d544279
31f371a
 
 
 
 
 
 
 
 
 
7b8b9f8
31f371a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b8b9f8
31f371a
 
 
 
 
 
 
 
d544279
31f371a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75f5073
31f371a
75f5073
 
31f371a
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import numpy as np
import requests
import re
import json
import os
from collections import Counter
from typing import List, Tuple, Dict
import random
import math
try:
    from datasets import load_dataset
except ImportError:
    print("datasets non disponibile, usando solo dati sintetici")
    load_dataset = None
try:
    from transformers import AutoTokenizer
except ImportError:
    print("transformers non disponibile, usando tokenizer personalizzato")
    AutoTokenizer = None
import gradio as gr

class SelfOrganizingTokenizer:
    def __init__(self, vocab_size=30000):
        self.vocab_size = vocab_size
        self.token_to_id = {'<PAD>': 0, '<UNK>': 1, '<BOS>': 2, '<EOS>': 3}
        self.id_to_token = {0: '<PAD>', 1: '<UNK>', 2: '<BOS>', 3: '<EOS>'}
        self.word_freq = Counter()
        
    def build_vocab(self, texts):
        for text in texts:
            words = re.findall(r'\w+|[^\w\s]', text.lower())
            self.word_freq.update(words)
        
        most_common = self.word_freq.most_common(self.vocab_size - 4)
        for i, (word, _) in enumerate(most_common):
            idx = i + 4
            self.token_to_id[word] = idx
            self.id_to_token[idx] = word
    
    def encode(self, text):
        words = re.findall(r'\w+|[^\w\s]', text.lower())
        return [self.token_to_id.get(word, 1) for word in words]
    
    def decode(self, ids):
        return ' '.join([self.id_to_token.get(id, '<UNK>') for id in ids])

class SelfOrganizingAttention(nn.Module):
    def __init__(self, embed_dim, num_heads):
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.head_dim = embed_dim // num_heads
        
        self.qkv = nn.Linear(embed_dim, embed_dim * 3)
        self.proj = nn.Linear(embed_dim, embed_dim)
        self.adaptation_layer = nn.Linear(embed_dim, embed_dim)
        
    def forward(self, x):
        B, T, C = x.shape
        qkv = self.qkv(x).reshape(B, T, 3, self.num_heads, self.head_dim)
        q, k, v = qkv.permute(2, 0, 3, 1, 4)
        
        att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
        att = torch.softmax(att, dim=-1)
        
        y = att @ v
        y = y.transpose(1, 2).reshape(B, T, C)
        y = self.proj(y)
        
        # Auto-organizzazione
        adaptation = torch.tanh(self.adaptation_layer(x))
        y = y * (1 + 0.1 * adaptation)
        
        return y

class SelfOrganizingTransformer(nn.Module):
    def __init__(self, vocab_size, embed_dim=512, num_heads=8, num_layers=6, max_len=1024):
        super().__init__()
        self.embed_dim = embed_dim
        self.tok_embed = nn.Embedding(vocab_size, embed_dim)
        self.pos_embed = nn.Embedding(max_len, embed_dim)
        
        self.layers = nn.ModuleList([
            nn.ModuleDict({
                'attn': SelfOrganizingAttention(embed_dim, num_heads),
                'norm1': nn.LayerNorm(embed_dim),
                'mlp': nn.Sequential(
                    nn.Linear(embed_dim, 4 * embed_dim),
                    nn.GELU(),
                    nn.Linear(4 * embed_dim, embed_dim),
                ),
                'norm2': nn.LayerNorm(embed_dim),
                'adaptation': nn.Linear(embed_dim, embed_dim)
            }) for _ in range(num_layers)
        ])
        
        self.ln_f = nn.LayerNorm(embed_dim)
        self.head = nn.Linear(embed_dim, vocab_size)
        
        # Parametri per auto-organizzazione
        self.plasticity = nn.Parameter(torch.ones(num_layers) * 0.01)
        
    def forward(self, x):
        B, T = x.shape
        pos = torch.arange(0, T, dtype=torch.long, device=x.device)
        
        x = self.tok_embed(x) + self.pos_embed(pos)
        
        for i, layer in enumerate(self.layers):
            residual = x
            x = layer['norm1'](x)
            x = layer['attn'](x)
            
            # Auto-organizzazione adattiva
            adaptation = torch.tanh(layer['adaptation'](x))
            x = residual + x * (1 + self.plasticity[i] * adaptation)
            
            residual = x
            x = layer['norm2'](x)
            x = layer['mlp'](x)
            x = residual + x
        
        x = self.ln_f(x)
        logits = self.head(x)
        return logits

class TextDataset(Dataset):
    def __init__(self, texts, tokenizer, max_len=512):
        self.texts = texts
        self.tokenizer = tokenizer
        self.max_len = max_len
        
    def __len__(self):
        return len(self.texts)
    
    def __getitem__(self, idx):
        text = self.texts[idx]
        tokens = self.tokenizer.encode(text)
        
        if len(tokens) < self.max_len:
            tokens = tokens + [0] * (self.max_len - len(tokens))
        else:
            tokens = tokens[:self.max_len]
            
        return torch.tensor(tokens[:-1]), torch.tensor(tokens[1:])

class AITrainer:
    def __init__(self):
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.tokenizer = None
        self.model = None
        self.datasets = []
        
    def load_public_datasets(self):
        """Carica dataset pubblici senza API key"""
        datasets = []
        
        if load_dataset:
            try:
                # Wikipedia in italiano
                wiki = load_dataset("wikipedia", "20220301.it", split="train[:1000]", trust_remote_code=True)
                for item in wiki:
                    if len(item['text']) > 100:
                        datasets.append(item['text'])
                print(f"Caricati {len(datasets)} esempi da Wikipedia")
            except Exception as e:
                print(f"Wikipedia non disponibile: {e}")
                
            try:
                # Common Crawl
                cc = load_dataset("cc100", lang="it", split="train[:500]", trust_remote_code=True)
                for item in cc:
                    if len(item['text']) > 100:
                        datasets.append(item['text'])
                print(f"Caricati esempi da Common Crawl")
            except Exception as e:
                print(f"Common Crawl non disponibile: {e}")
        
        # Dataset di testo semplice da URL pubblici
        urls = [
            "https://www.gutenberg.org/files/2000/2000-0.txt",  # Divina Commedia
        ]
        
        for url in urls:
            try:
                response = requests.get(url, timeout=10)
                if response.status_code == 200:
                    text = response.text
                    # Filtra contenuto utile
                    lines = text.split('\n')
                    filtered_lines = [line.strip() for line in lines if len(line.strip()) > 50]
                    chunks = filtered_lines[:1000]  # Primi 1000 chunk
                    datasets.extend(chunks)
                    print(f"Caricati {len(chunks)} chunk da {url}")
            except Exception as e:
                print(f"Errore caricamento {url}: {e}")
                continue
        
        # Genera dati sintetici
        print("Generazione dati sintetici...")
        synthetic_texts = self.generate_synthetic_data(8000)
        datasets.extend(synthetic_texts)
        
        self.datasets = datasets[:10000]  # Limita a 10k esempi
        print(f"Dataset finale: {len(self.datasets)} esempi")
        
    def generate_synthetic_data(self, num_samples):
        """Genera dati sintetici per il training"""
        templates = [
            "Il {sostantivo} {verbo} nel {luogo} durante {tempo}.",
            "La {sostantivo} è molto {aggettivo} e {verbo} sempre.",
            "Quando {verbo}, il {sostantivo} diventa {aggettivo}.",
            "Nel {luogo}, la {sostantivo} {verbo} con {sostantivo}.",
            "Il {aggettivo} {sostantivo} {verbo} ogni {tempo}."
        ]
        
        sostantivi = ["gatto", "cane", "casa", "albero", "fiume", "montagna", "libro", "sole"]
        verbi = ["corre", "salta", "vola", "nuota", "dorme", "mangia", "gioca", "legge"]
        aggettivi = ["bello", "grande", "piccolo", "veloce", "lento", "intelligente", "forte"]
        luoghi = ["parco", "giardino", "bosco", "città", "mare", "cielo", "campo"]
        tempi = ["giorno", "notte", "mattina", "sera", "inverno", "estate", "primavera"]
        
        texts = []
        for _ in range(num_samples):
            template = random.choice(templates)
            text = template.format(
                sostantivo=random.choice(sostantivi),
                verbo=random.choice(verbi),
                aggettivo=random.choice(aggettivi),
                luogo=random.choice(luoghi),
                tempo=random.choice(tempi)
            )
            texts.append(text)
        
        return texts
    
    def setup_model(self, vocab_size=30000):
        """Configura il modello transformer auto-organizzante"""
        self.model = SelfOrganizingTransformer(
            vocab_size=vocab_size,
            embed_dim=512,
            num_heads=8,
            num_layers=6,
            max_len=512
        ).to(self.device)
        
        # Calcola parametri
        total_params = sum(p.numel() for p in self.model.parameters())
        print(f"Modello creato con {total_params:,} parametri")
        
    def train(self, epochs=5, batch_size=16, lr=3e-4):
        """Training del modello"""
        print("Inizializzazione tokenizer...")
        self.tokenizer = SelfOrganizingTokenizer()
        self.tokenizer.build_vocab(self.datasets)
        
        print("Configurazione modello...")
        self.setup_model(len(self.tokenizer.token_to_id))
        
        print("Preparazione dataset...")
        dataset = TextDataset(self.datasets, self.tokenizer)
        dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
        
        optimizer = optim.AdamW(self.model.parameters(), lr=lr, weight_decay=0.01)
        criterion = nn.CrossEntropyLoss(ignore_index=0)
        
        print("Inizio training...")
        self.model.train()
        
        for epoch in range(epochs):
            total_loss = 0
            num_batches = 0
            
            for batch_idx, (input_ids, target_ids) in enumerate(dataloader):
                input_ids = input_ids.to(self.device)
                target_ids = target_ids.to(self.device)
                
                optimizer.zero_grad()
                
                logits = self.model(input_ids)
                loss = criterion(logits.reshape(-1, logits.size(-1)), target_ids.reshape(-1))
                
                loss.backward()
                torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
                optimizer.step()
                
                total_loss += loss.item()
                num_batches += 1
                
                if batch_idx % 50 == 0:
                    print(f"Epoch {epoch+1}/{epochs}, Batch {batch_idx}, Loss: {loss.item():.4f}")
            
            avg_loss = total_loss / num_batches
            print(f"Epoch {epoch+1}/{epochs} completata. Loss media: {avg_loss:.4f}")
            
            # Test generazione
            if epoch % 2 == 0:
                self.test_generation("Il gatto")
        
        print("Training completato!")
        self.save_model()
    
    def test_generation(self, prompt, max_length=50):
        """Test di generazione testo"""
        self.model.eval()
        with torch.no_grad():
            tokens = self.tokenizer.encode(prompt)
            input_ids = torch.tensor([tokens]).to(self.device)
            
            for _ in range(max_length):
                logits = self.model(input_ids)
                next_token = torch.argmax(logits[0, -1, :], dim=-1)
                input_ids = torch.cat([input_ids, next_token.unsqueeze(0).unsqueeze(0)], dim=1)
                
                if next_token.item() == self.tokenizer.token_to_id.get('<EOS>', 3):
                    break
            
            generated = self.tokenizer.decode(input_ids[0].cpu().numpy())
            print(f"Generazione: {generated}")
        
        self.model.train()
        return generated
    
    def save_model(self):
        """Salva il modello"""
        torch.save({
            'model_state_dict': self.model.state_dict(),
            'tokenizer': self.tokenizer,
            'vocab_size': len(self.tokenizer.token_to_id)
        }, 'ai_model.pth')
        print("Modello salvato in ai_model.pth")
    
    def load_model(self):
        """Carica il modello"""
        if os.path.exists('ai_model.pth'):
            checkpoint = torch.load('ai_model.pth', map_location=self.device)
            self.tokenizer = checkpoint['tokenizer']
            self.setup_model(checkpoint['vocab_size'])
            self.model.load_state_dict(checkpoint['model_state_dict'])
            print("Modello caricato da ai_model.pth")
            return True
        return False
    
    def generate_text(self, prompt, max_length=100, temperature=0.8):
        """Genera testo dal prompt"""
        if not self.model or not self.tokenizer:
            return "Modello non caricato. Esegui prima il training."
        
        self.model.eval()
        with torch.no_grad():
            tokens = self.tokenizer.encode(prompt)
            input_ids = torch.tensor([tokens]).to(self.device)
            
            for _ in range(max_length):
                logits = self.model(input_ids)
                logits = logits[0, -1, :] / temperature
                probs = torch.softmax(logits, dim=-1)
                next_token = torch.multinomial(probs, 1)
                
                input_ids = torch.cat([input_ids, next_token.unsqueeze(0)], dim=1)
                
                if next_token.item() == self.tokenizer.token_to_id.get('<EOS>', 3):
                    break
            
            generated = self.tokenizer.decode(input_ids[0].cpu().numpy())
            return generated

def create_interface():
    """Crea interfaccia Gradio"""
    trainer = AITrainer()
    
    def start_training():
        try:
            trainer.load_public_datasets()
            trainer.train(epochs=3)
            return "Training completato con successo!"
        except Exception as e:
            return f"Errore durante il training: {str(e)}"
    
    def generate(prompt, max_len, temp):
        try:
            if not trainer.load_model():
                return "Modello non trovato. Esegui prima il training."
            result = trainer.generate_text(prompt, max_len, temp)
            return result
        except Exception as e:
            return f"Errore nella generazione: {str(e)}"
    
    with gr.Blocks(title="AI Token Trainer") as demo:
        gr.Markdown("# AI Training System - Predizione Token")
        
        with gr.Tab("Training"):
            train_btn = gr.Button("Avvia Training", variant="primary")
            train_output = gr.Textbox(label="Stato Training", lines=5)
            train_btn.click(start_training, outputs=train_output)
        
        with gr.Tab("Generazione"):
            prompt_input = gr.Textbox(label="Prompt", placeholder="Inserisci il testo di partenza...")
            max_len_slider = gr.Slider(10, 200, value=50, label="Lunghezza massima")
            temp_slider = gr.Slider(0.1, 2.0, value=0.8, label="Temperatura")
            generate_btn = gr.Button("Genera Testo", variant="primary")
            output_text = gr.Textbox(label="Testo Generato", lines=10)
            
            generate_btn.click(
                generate,
                inputs=[prompt_input, max_len_slider, temp_slider],
                outputs=output_text
            )
    
    return demo

if __name__ == "__main__":
    # Training automatico se richiesto
    if len(os.sys.argv) > 1 and os.sys.argv[1] == "train":
        trainer = AITrainer()
        trainer.load_public_datasets()
        trainer.train()
    else:
        # Interfaccia Gradio
        demo = create_interface()
        demo.launch(share=True)