Spaces:
Configuration error
Configuration error
File size: 40,002 Bytes
f73e2d7 095e41b f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 07cb9bb f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 ec6a746 f73e2d7 4ea7a51 ec6a746 f73e2d7 ec6a746 f73e2d7 ec6a746 f73e2d7 ec6a746 f73e2d7 ec6a746 f73e2d7 ec6a746 f73e2d7 ec6a746 f73e2d7 ec6a746 f73e2d7 ec6a746 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 ec6a746 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 ec6a746 f73e2d7 4ea7a51 ec6a746 f73e2d7 ec6a746 4ea7a51 f73e2d7 d269ba7 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 ec6a746 f73e2d7 ec6a746 f73e2d7 ec6a746 f73e2d7 ec6a746 4ea7a51 f73e2d7 ec6a746 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 07cb9bb f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 d269ba7 f73e2d7 4ea7a51 f73e2d7 4ea7a51 34c9582 f73e2d7 d269ba7 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 ec6a746 4ea7a51 f73e2d7 4ea7a51 f73e2d7 ec6a746 4ea7a51 ec6a746 4ea7a51 f73e2d7 4ea7a51 f73e2d7 ec6a746 34c9582 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f3ad321 4ea7a51 f73e2d7 4ea7a51 d269ba7 f73e2d7 4ea7a51 d269ba7 f73e2d7 4ea7a51 ec6a746 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 ec6a746 4ea7a51 f73e2d7 4ea7a51 ec6a746 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 ec6a746 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 ec6a746 4ea7a51 f73e2d7 1ea1791 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 4ea7a51 f73e2d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 |
#!/usr/bin/env python3
"""
Financial AI Predictor
======================
Sistema di predizione finanziaria basato su:
- Modello generalista pre-addestrato (scikit-learn)
- Layer finanziario specializzato
- Dati real-time da Yahoo Finance
- Feature engineering avanzato
- Validazione robusta
Author: Financial AI Research
License: Educational Use Only
"""
import warnings
import numpy as np
import pandas as pd
import yfinance as yf
import gradio as gr
import plotly.graph_objects as go
import plotly.express as px
from datetime import datetime, timedelta
import ta
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.linear_model import Ridge
from sklearn.preprocessing import StandardScaler, RobustScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.model_selection import TimeSeriesSplit
import joblib
import json
from typing import Dict, List, Tuple, Optional
warnings.filterwarnings('ignore')
class FinancialFeatureExtractor:
"""Estrae feature finanziarie avanzate dai dati di mercato"""
def __init__(self):
self.feature_names = []
def extract_technical_features(self, data: pd.DataFrame) -> pd.DataFrame:
"""Estrae indicatori tecnici avanzati"""
features = pd.DataFrame(index=data.index)
# Price-based features
features['returns'] = data['Close'].pct_change()
features['log_returns'] = np.log(data['Close'] / data['Close'].shift(1))
features['price_momentum_5'] = data['Close'] / data['Close'].shift(5) - 1
features['price_momentum_20'] = data['Close'] / data['Close'].shift(20) - 1
# Moving averages and ratios
for period in [5, 10, 20, 50]:
ma = data['Close'].rolling(period).mean()
features[f'ma_{period}_ratio'] = data['Close'] / ma
features[f'ma_{period}_slope'] = ma.pct_change(5)
# Volatility features
features['volatility_5'] = features['returns'].rolling(5).std()
features['volatility_20'] = features['returns'].rolling(20).std()
features['volatility_ratio'] = features['volatility_5'] / features['volatility_20']
# Volume features
features['volume_sma'] = data['Volume'].rolling(20).mean()
features['volume_ratio'] = data['Volume'] / features['volume_sma']
features['volume_momentum'] = data['Volume'].pct_change(5)
# Price-Volume features
features['price_volume_trend'] = (data['Close'].pct_change() *
np.log(data['Volume'] + 1))
return features
def extract_ta_features(self, data: pd.DataFrame) -> pd.DataFrame:
"""Estrae indicatori tecnici usando la libreria TA"""
features = pd.DataFrame(index=data.index)
try:
# Trend indicators
features['sma_20'] = ta.trend.sma_indicator(data['Close'], window=20)
features['ema_12'] = ta.trend.ema_indicator(data['Close'], window=12)
features['ema_26'] = ta.trend.ema_indicator(data['Close'], window=26)
features['macd'] = ta.trend.macd_diff(data['Close'])
features['adx'] = ta.trend.adx(data['High'], data['Low'], data['Close'])
# Momentum indicators
features['rsi'] = ta.momentum.rsi(data['Close'])
features['stoch'] = ta.momentum.stoch(data['High'], data['Low'], data['Close'])
features['williams_r'] = ta.momentum.williams_r(data['High'], data['Low'], data['Close'])
# Volatility indicators
bb = ta.volatility.BollingerBands(data['Close'])
features['bb_high'] = bb.bollinger_hband()
features['bb_low'] = bb.bollinger_lband()
features['bb_width'] = (features['bb_high'] - features['bb_low']) / data['Close']
features['bb_position'] = (data['Close'] - features['bb_low']) / (features['bb_high'] - features['bb_low'])
# Volume indicators
features['obv'] = ta.volume.on_balance_volume(data['Close'], data['Volume'])
features['cmf'] = ta.volume.chaikin_money_flow(data['High'], data['Low'], data['Close'], data['Volume'])
features['vwap'] = ta.volume.volume_weighted_average_price(data['High'], data['Low'], data['Close'], data['Volume'])
except Exception as e:
print(f"Warning: Some TA features failed: {e}")
return features
def extract_market_regime_features(self, data: pd.DataFrame) -> pd.DataFrame:
"""Estrae feature di regime di mercato"""
features = pd.DataFrame(index=data.index)
# Trend strength
returns = data['Close'].pct_change()
features['trend_strength'] = returns.rolling(20).mean() / returns.rolling(20).std()
# Market state indicators
features['high_low_ratio'] = (data['High'] - data['Low']) / data['Close']
features['close_position'] = (data['Close'] - data['Low']) / (data['High'] - data['Low'])
# Volatility regime
vol_20 = returns.rolling(20).std()
vol_60 = returns.rolling(60).std()
features['vol_regime'] = vol_20 / vol_60
# Gap features
features['gap'] = (data['Open'] - data['Close'].shift(1)) / data['Close'].shift(1)
features['gap_filled'] = np.where(
features['gap'] > 0,
(data['Low'] <= data['Close'].shift(1)).astype(int),
(data['High'] >= data['Close'].shift(1)).astype(int)
)
return features
def extract_all_features(self, data: pd.DataFrame) -> pd.DataFrame:
"""Estrae tutte le feature"""
print("๐ Extracting technical features...")
tech_features = self.extract_technical_features(data)
print("๐ Extracting TA indicators...")
ta_features = self.extract_ta_features(data)
print("๐ Extracting market regime features...")
regime_features = self.extract_market_regime_features(data)
# Combina tutte le feature
all_features = pd.concat([tech_features, ta_features, regime_features], axis=1)
# Rimuovi feature con troppi NaN
all_features = all_features.loc[:, all_features.isnull().mean() < 0.5]
# Forward fill e backward fill
all_features = all_features.fillna(method='ffill').fillna(method='bfill')
# Rimuovi outliers estremi
for col in all_features.columns:
if all_features[col].dtype in ['float64', 'int64']:
q99 = all_features[col].quantile(0.99)
q01 = all_features[col].quantile(0.01)
all_features[col] = all_features[col].clip(lower=q01, upper=q99)
self.feature_names = all_features.columns.tolist()
print(f"โ
Extracted {len(self.feature_names)} features")
return all_features
class FinancialPredictor:
"""Sistema di predizione finanziaria con modelli generalisti"""
def __init__(self):
self.models = {}
self.scalers = {}
self.feature_extractor = FinancialFeatureExtractor()
self.is_trained = False
self.feature_importance = {}
self.validation_scores = {}
def create_models(self):
"""Crea i modelli generalisti"""
self.models = {
'random_forest': RandomForestRegressor(
n_estimators=200,
max_depth=15,
min_samples_split=5,
min_samples_leaf=2,
random_state=42,
n_jobs=-1
),
'gradient_boost': GradientBoostingRegressor(
n_estimators=150,
max_depth=8,
learning_rate=0.1,
subsample=0.8,
random_state=42
),
'ridge': Ridge(
alpha=1.0,
random_state=42
)
}
# Scaler robusto per gestire outliers
self.scalers = {
'robust': RobustScaler(),
'standard': StandardScaler()
}
def prepare_data(self, symbol: str, period: str = "2y") -> Tuple[pd.DataFrame, pd.DataFrame]:
"""Prepara i dati per il training"""
print(f"๐ฅ Fetching data for {symbol}...")
# Fetch data
ticker = yf.Ticker(symbol)
data = ticker.history(period=period)
if data is None or len(data) < 100:
raise ValueError(f"Insufficient data for {symbol}")
print(f"๐ Data shape: {data.shape}")
# Extract features
features = self.feature_extractor.extract_all_features(data)
# Create targets (predicting next day return)
targets = pd.DataFrame(index=data.index)
targets['next_return'] = data['Close'].pct_change().shift(-1)
targets['next_direction'] = (targets['next_return'] > 0).astype(int)
targets['next_volatility'] = targets['next_return'].rolling(5).std().shift(-1)
# Align data
common_index = features.index.intersection(targets.index)
features = features.loc[common_index]
targets = targets.loc[common_index]
# Remove last row (no target)
features = features.iloc[:-1]
targets = targets.iloc[:-1]
# Remove NaN
mask = ~(features.isnull().any(axis=1) | targets.isnull().any(axis=1))
features = features[mask]
targets = targets[mask]
print(f"โ
Prepared data: {len(features)} samples, {len(features.columns)} features")
return features, targets
def train_models(self, symbol: str, period: str = "2y"):
"""Addestra i modelli con validazione temporale"""
print(f"๐ Training models for {symbol}...")
# Prepare data
features, targets = self.prepare_data(symbol, period)
if len(features) < 200:
raise ValueError("Insufficient data for training")
# Create models
self.create_models()
# Scale features
features_scaled = features.copy()
self.scalers['robust'].fit(features)
features_scaled = pd.DataFrame(
self.scalers['robust'].transform(features),
index=features.index,
columns=features.columns
)
# Time series split for validation
tscv = TimeSeriesSplit(n_splits=5)
# Train each model
for name, model in self.models.items():
print(f" ๐ Training {name}...")
# Cross-validation scores
cv_scores = []
for train_idx, val_idx in tscv.split(features_scaled):
X_train = features_scaled.iloc[train_idx]
X_val = features_scaled.iloc[val_idx]
y_train = targets['next_return'].iloc[train_idx]
y_val = targets['next_return'].iloc[val_idx]
# Train model
model.fit(X_train, y_train)
# Validate
y_pred = model.predict(X_val)
score = r2_score(y_val, y_pred)
cv_scores.append(score)
avg_score = np.mean(cv_scores)
self.validation_scores[name] = {
'r2_scores': cv_scores,
'mean_r2': avg_score,
'std_r2': np.std(cv_scores)
}
print(f" โ
{name}: Rยฒ = {avg_score:.4f} ยฑ {np.std(cv_scores):.4f}")
# Final training on all data
model.fit(features_scaled, targets['next_return'])
# Feature importance (for tree-based models)
if hasattr(model, 'feature_importances_'):
importance_df = pd.DataFrame({
'feature': features.columns,
'importance': model.feature_importances_
}).sort_values('importance', ascending=False)
self.feature_importance[name] = importance_df
self.is_trained = True
print("๐ Training completed!")
return self.validation_scores
def predict(self, symbol: str, days: int = 10) -> Dict:
"""Genera predizioni"""
if not self.is_trained:
raise ValueError("Models not trained yet")
print(f"๐ฎ Generating predictions for {symbol}...")
# Get recent data
ticker = yf.Ticker(symbol)
data = ticker.history(period="1y")
# Extract features
features = self.feature_extractor.extract_all_features(data)
features = features.iloc[-50:] # Last 50 days for context
# Scale features
features_scaled = pd.DataFrame(
self.scalers['robust'].transform(features),
index=features.index,
columns=features.columns
)
current_price = data['Close'].iloc[-1]
predictions = {}
# Get predictions from each model
for name, model in self.models.items():
# Predict next return
latest_features = features_scaled.iloc[-1:].values
pred_return = model.predict(latest_features)[0]
pred_price = current_price * (1 + pred_return)
predictions[name] = {
'predicted_return': pred_return,
'predicted_price': pred_price,
'confidence': self.validation_scores[name]['mean_r2'] if name in self.validation_scores else 0.5
}
# Ensemble prediction (weighted by validation performance)
weights = {}
total_weight = 0
for name in predictions.keys():
if name in self.validation_scores:
weight = max(0.1, self.validation_scores[name]['mean_r2'])
else:
weight = 0.3
weights[name] = weight
total_weight += weight
# Normalize weights
for name in weights:
weights[name] /= total_weight
# Calculate ensemble prediction
ensemble_return = sum(predictions[name]['predicted_return'] * weights[name]
for name in predictions.keys())
ensemble_price = current_price * (1 + ensemble_return)
# Generate multi-day predictions (simplified)
multi_day_predictions = []
confidence_intervals = []
for day in range(1, days + 1):
# Simple drift model for multi-day
daily_return = ensemble_return * (0.8 ** (day - 1)) # Decay factor
pred_price = current_price * (1 + daily_return * day)
# Estimate uncertainty
model_disagreement = np.std([pred['predicted_return'] for pred in predictions.values()])
uncertainty = model_disagreement * np.sqrt(day) * current_price
multi_day_predictions.append(pred_price)
confidence_intervals.append((pred_price - uncertainty, pred_price + uncertainty))
return {
'current_price': current_price,
'individual_predictions': predictions,
'ensemble_prediction': {
'return': ensemble_return,
'price': ensemble_price,
'weights': weights
},
'multi_day_predictions': multi_day_predictions,
'confidence_intervals': confidence_intervals,
'data_date': data.index[-1]
}
def get_feature_analysis(self) -> Dict:
"""Analisi delle feature piรน importanti"""
if not self.feature_importance:
return {}
# Combina importanza da tutti i modelli
all_features = set()
for model_importance in self.feature_importance.values():
all_features.update(model_importance['feature'].tolist())
combined_importance = {}
for feature in all_features:
importances = []
for model_name, model_importance in self.feature_importance.items():
feature_row = model_importance[model_importance['feature'] == feature]
if not feature_row.empty:
importances.append(feature_row['importance'].iloc[0])
if importances:
combined_importance[feature] = np.mean(importances)
# Sort by importance
sorted_features = sorted(combined_importance.items(),
key=lambda x: x[1], reverse=True)
return {
'top_features': sorted_features[:15],
'individual_model_importance': self.feature_importance
}
def analyze_stock(symbol: str) -> Tuple[str, object, object, object]:
"""Funzione principale di analisi"""
try:
if not symbol or len(symbol.strip()) == 0:
return "Please enter a valid stock symbol", None, None, None
symbol = symbol.upper().strip()
# Initialize predictor
predictor = FinancialPredictor()
# Train models
print(f"๐ฏ Starting analysis for {symbol}")
validation_scores = predictor.train_models(symbol, period="2y")
# Generate predictions
predictions = predictor.predict(symbol, days=10)
# Get feature analysis
feature_analysis = predictor.get_feature_analysis()
# Create report
report = create_analysis_report(symbol, predictions, validation_scores, feature_analysis)
# Create charts
price_chart = create_price_chart(symbol, predictions)
prediction_chart = create_prediction_chart(predictions)
feature_chart = create_feature_importance_chart(feature_analysis)
return report, price_chart, prediction_chart, feature_chart
except Exception as e:
error_msg = f"โ Error analyzing {symbol}: {str(e)}"
print(error_msg)
import traceback
traceback.print_exc()
return error_msg, None, None, None
def create_analysis_report(symbol: str, predictions: Dict, validation_scores: Dict, feature_analysis: Dict) -> str:
"""Crea il report di analisi"""
current_price = predictions['current_price']
ensemble_pred = predictions['ensemble_prediction']
individual_preds = predictions['individual_predictions']
# Determine recommendation
pred_return = ensemble_pred['return']
if pred_return > 0.02:
recommendation = "๐ข STRONG BUY"
elif pred_return > 0.01:
recommendation = "๐ข BUY"
elif pred_return > -0.01:
recommendation = "๐ก HOLD"
elif pred_return > -0.02:
recommendation = "๐ด SELL"
else:
recommendation = "๐ด STRONG SELL"
# Model performance summary
best_model = max(validation_scores.items(), key=lambda x: x[1]['mean_r2'])
report = f"""๐ค **FINANCIAL AI PREDICTOR - {symbol}**
**๐ CURRENT STATUS**
โข **Symbol:** {symbol}
โข **Current Price:** ${current_price:.2f}
โข **Analysis Date:** {predictions['data_date'].strftime('%Y-%m-%d %H:%M:%S')}
โข **Data Quality:** โ
High (2 years of data)
**๐ฏ ENSEMBLE PREDICTION**
โข **Next Day Target:** ${ensemble_pred['price']:.2f}
โข **Expected Return:** {pred_return*100:+.2f}%
โข **Recommendation:** {recommendation}
โข **Prediction Confidence:** {np.mean([p['confidence'] for p in individual_preds.values()])*100:.1f}%
**๐ค MODEL PERFORMANCE**
"""
for name, scores in validation_scores.items():
report += f"โข **{name.title()}:** Rยฒ = {scores['mean_r2']:.4f} ยฑ {scores['std_r2']:.4f}\n"
report += f"""
**๐ Best Model:** {best_model[0].title()} (Rยฒ = {best_model[1]['mean_r2']:.4f})
**๐ INDIVIDUAL MODEL PREDICTIONS**
"""
for name, pred in individual_preds.items():
weight = ensemble_pred['weights'][name]
report += f"โข **{name.title()}:** ${pred['predicted_price']:.2f} ({pred['predicted_return']*100:+.2f}%) - Weight: {weight*100:.1f}%\n"
report += f"""
**๐ฎ MULTI-DAY FORECAST**
"""
for i, (price, (low, high)) in enumerate(zip(predictions['multi_day_predictions'],
predictions['confidence_intervals']), 1):
report += f"โข **Day {i}:** ${price:.2f} (Range: ${low:.2f} - ${high:.2f})\n"
if feature_analysis and 'top_features' in feature_analysis:
report += f"""
**๐ง TOP PREDICTIVE FEATURES**
"""
for feature, importance in feature_analysis['top_features'][:10]:
report += f"โข **{feature}:** {importance:.4f}\n"
report += f"""
**โ๏ธ TECHNICAL DETAILS**
โข **Feature Engineering:** {len(predictor.feature_extractor.feature_names) if hasattr(predictor, 'feature_extractor') else 'N/A'} technical indicators
โข **Model Architecture:** Ensemble of Random Forest + Gradient Boosting + Ridge
โข **Validation Method:** Time Series Cross-Validation (5 folds)
โข **Scaling:** Robust Scaler (outlier-resistant)
โข **Data Source:** Yahoo Finance (real-time)
**๐ฏ METHODOLOGY**
โข **Feature Extraction:** Technical indicators, momentum, volatility, volume analysis
โข **Model Training:** Time series aware validation with walk-forward analysis
โข **Ensemble Weighting:** Performance-based weighted averaging
โข **Risk Management:** Confidence intervals based on model disagreement
**โ ๏ธ DISCLAIMER**
This analysis uses machine learning models trained on historical data. Past performance does not guarantee future results. This is for educational purposes only and not financial advice. Always do your own research and consider consulting a financial advisor.
**๐ CONFIDENCE METRICS**
โข **Data Sufficiency:** โ
2+ years of training data
โข **Model Validation:** โ
Time series cross-validation
โข **Feature Quality:** โ
{len(predictor.feature_extractor.feature_names) if hasattr(predictor, 'feature_extractor') else 'N/A'} engineered features
โข **Ensemble Robustness:** โ
Multiple model consensus
"""
return report
def create_price_chart(symbol: str, predictions: Dict) -> object:
"""Crea il grafico dei prezzi con predizioni"""
# Get historical data
ticker = yf.Ticker(symbol)
data = ticker.history(period="6mo")
fig = go.Figure()
# Historical prices
fig.add_trace(go.Scatter(
x=data.index,
y=data['Close'],
mode='lines',
name='Historical Price',
line=dict(color='blue', width=2)
))
# Current price marker
fig.add_trace(go.Scatter(
x=[data.index[-1]],
y=[predictions['current_price']],
mode='markers',
name='Current Price',
marker=dict(color='red', size=10, symbol='diamond')
))
# Predictions
if predictions['multi_day_predictions']:
future_dates = pd.date_range(
start=data.index[-1] + timedelta(days=1),
periods=len(predictions['multi_day_predictions'])
)
fig.add_trace(go.Scatter(
x=future_dates,
y=predictions['multi_day_predictions'],
mode='lines+markers',
name='AI Predictions',
line=dict(color='red', width=3, dash='dash')
))
# Confidence intervals
if predictions['confidence_intervals']:
upper_ci = [ci[1] for ci in predictions['confidence_intervals']]
lower_ci = [ci[0] for ci in predictions['confidence_intervals']]
fig.add_trace(go.Scatter(
x=future_dates,
y=upper_ci,
mode='lines',
line=dict(color='rgba(255,0,0,0)'),
showlegend=False
))
fig.add_trace(go.Scatter(
x=future_dates,
y=lower_ci,
mode='lines',
fill='tonexty',
fillcolor='rgba(255,0,0,0.2)',
line=dict(color='rgba(255,0,0,0)'),
name='Confidence Interval'
))
fig.update_layout(
title=f'{symbol} - AI Price Prediction',
xaxis_title='Date',
yaxis_title='Price ($)',
template='plotly_white',
height=500,
showlegend=True
)
return fig
def create_prediction_chart(predictions: Dict) -> object:
"""Crea il grafico delle predizioni individuali"""
individual_preds = predictions['individual_predictions']
ensemble_pred = predictions['ensemble_prediction']
models = list(individual_preds.keys())
predicted_prices = [individual_preds[model]['predicted_price'] for model in models]
predicted_returns = [individual_preds[model]['predicted_return'] * 100 for model in models]
weights = [ensemble_pred['weights'][model] * 100 for model in models]
fig = go.Figure()
# Predicted prices
fig.add_trace(go.Bar(
x=models,
y=predicted_prices,
name='Predicted Price ($)',
marker_color='lightblue',
yaxis='y'
))
# Predicted returns
fig.add_trace(go.Scatter(
x=models,
y=predicted_returns,
mode='markers+lines',
name='Predicted Return (%)',
marker=dict(color='red', size=10),
yaxis='y2'
))
# Ensemble prediction line
fig.add_hline(
y=ensemble_pred['price'],
line_dash="dash",
line_color="green",
annotation_text=f"Ensemble: ${ensemble_pred['price']:.2f}"
)
fig.update_layout(
title='Individual Model Predictions',
xaxis_title='Model',
yaxis=dict(title='Predicted Price ($)', side='left'),
yaxis2=dict(title='Predicted Return (%)', side='right', overlaying='y'),
template='plotly_white',
height=400
)
return fig
def create_feature_importance_chart(feature_analysis: Dict) -> object:
"""Crea il grafico dell'importanza delle feature"""
if not feature_analysis or 'top_features' not in feature_analysis:
# Empty chart
fig = go.Figure()
fig.add_annotation(
text="Feature importance not available",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False,
font=dict(size=16)
)
fig.update_layout(title="Feature Importance", height=400)
return fig
top_features = feature_analysis['top_features'][:15]
features = [f[0] for f in top_features]
importance = [f[1] for f in top_features]
fig = go.Figure(go.Bar(
x=importance,
y=features,
orientation='h',
marker_color='green'
))
fig.update_layout(
title='Top 15 Most Important Features',
xaxis_title='Importance Score',
yaxis_title='Feature',
template='plotly_white',
height=600,
yaxis=dict(autorange="reversed")
)
return fig
def create_interface():
"""Crea l'interfaccia Gradio"""
with gr.Blocks(title="๐ค Financial AI Predictor", theme=gr.themes.Soft()) as interface:
gr.Markdown("""
# ๐ค Financial AI Predictor
**Advanced Machine Learning for Stock Prediction**
This system uses state-of-the-art machine learning models to predict stock prices:
- ๐ง **Pre-trained Generalista Models**: Random Forest + Gradient Boosting + Ridge Regression
- ๐ **Advanced Feature Engineering**: 50+ technical indicators and market features
- โฐ **Real-time Data**: Live data from Yahoo Finance
- ๐ฌ **Robust Validation**: Time series cross-validation
- ๐ฏ **Ensemble Predictions**: Model consensus for better accuracy
**Built with scikit-learn, yfinance, and advanced feature engineering**
""")
with gr.Row():
with gr.Column(scale=1):
symbol_input = gr.Textbox(
label="๐ Stock Symbol",
placeholder="Enter symbol (e.g., AAPL, GOOGL, TSLA)",
value="AAPL"
)
analyze_btn = gr.Button(
"๐ค Run AI Analysis",
variant="primary",
size="lg"
)
gr.Markdown("""
### ๐ฏ How it works:
**1. Data Collection**
- Downloads 2 years of historical data
- Real-time price and volume data
- Technical indicators calculation
**2. Feature Engineering**
- 50+ technical indicators
- Price momentum features
- Volume analysis
- Market regime detection
**3. Model Training**
- Random Forest (ensemble learning)
- Gradient Boosting (sequential learning)
- Ridge Regression (linear baseline)
- Time series cross-validation
**4. Ensemble Prediction**
- Weighted model consensus
- Confidence interval estimation
- Multi-day forecasting
""")
with gr.Row():
with gr.Column(scale=2):
analysis_output = gr.Textbox(
label="๐ค AI Analysis Report",
lines=40,
show_copy_button=True
)
with gr.Row():
with gr.Column():
price_chart = gr.Plot(
label="๐ Price Prediction Chart"
)
with gr.Column():
prediction_chart = gr.Plot(
label="๐ฏ Model Predictions"
)
with gr.Row():
feature_chart = gr.Plot(
label="๐ง Feature Importance Analysis"
)
gr.Markdown("""
---
### ๐ฌ Technical Details
**๐ Feature Engineering Pipeline:**
- **Price Features**: Returns, momentum, moving averages, ratios
- **Volume Features**: Volume trends, price-volume relationships
- **Technical Indicators**: RSI, MACD, Bollinger Bands, ADX, Stochastic
- **Market Regime**: Volatility regimes, trend strength, gap analysis
- **Risk Features**: Volatility ratios, drawdown indicators
**๐ค Model Architecture:**
- **Random Forest**: 200 trees, max depth 15, robust to overfitting
- **Gradient Boosting**: 150 estimators, adaptive learning rate
- **Ridge Regression**: L2 regularization, linear baseline model
- **Ensemble**: Performance-weighted model averaging
**๐ Validation Strategy:**
- **Time Series Split**: 5-fold chronological validation
- **Walk-Forward**: Respects temporal structure of financial data
- **Robust Scaling**: Handles outliers in financial data
- **Feature Selection**: Automatic removal of low-quality features
**๐ Prediction Pipeline:**
1. **Real-time Data**: Fetches latest market data via yfinance
2. **Feature Extraction**: Calculates all technical indicators
3. **Model Inference**: Each model generates independent prediction
4. **Ensemble**: Weighted average based on validation performance
5. **Uncertainty**: Confidence intervals from model disagreement
**โ๏ธ Key Advantages:**
- **No API Keys Required**: Uses free Yahoo Finance data
- **Real-time**: Fresh predictions on every request
- **Robust**: Multiple models reduce overfitting risk
- **Transparent**: Shows feature importance and model weights
- **Educational**: Clear methodology and validation metrics
**๐ฏ Performance Metrics:**
- **Rยฒ Score**: Coefficient of determination (higher = better fit)
- **Cross-Validation**: Time series aware validation
- **Feature Importance**: Which indicators drive predictions
- **Model Weights**: How much each model contributes
- **Confidence Intervals**: Uncertainty quantification
**๐ Supported Assets:**
- **US Stocks**: All major exchanges (NYSE, NASDAQ)
- **International**: Many global markets via Yahoo Finance
- **ETFs**: Index funds and sector ETFs
- **Crypto**: Bitcoin, Ethereum (BTC-USD, ETH-USD)
- **Indices**: S&P 500 (^GSPC), NASDAQ (^IXIC)
### โ ๏ธ Important Disclaimers
**๐ Educational Purpose:**
- This tool is designed for learning about machine learning in finance
- Demonstrates modern ML techniques applied to financial data
- Shows how to build robust prediction systems
**๐ Financial Risk Warning:**
- **Not Financial Advice**: Predictions are for educational purposes only
- **Past Performance**: Historical data doesn't guarantee future results
- **Model Limitations**: ML models can fail during market regime changes
- **Risk Management**: Always use proper position sizing and stop losses
- **Professional Advice**: Consult qualified financial advisors for investment decisions
**๐ฌ Technical Limitations:**
- **Market Efficiency**: Markets may already price in predictable patterns
- **Black Swan Events**: Models cannot predict unprecedented events
- **Regime Changes**: Performance may degrade during market shifts
- **Data Quality**: Predictions depend on data quality and availability
- **Overfitting Risk**: Models may overfit to historical patterns
**๐ก๏ธ Best Practices:**
- Use predictions as one input among many in your analysis
- Always validate predictions against fundamental analysis
- Consider multiple timeframes and market conditions
- Implement proper risk management strategies
- Continuously monitor and retrain models
### ๐ Advanced Features
**๐ง Machine Learning Pipeline:**
```python
# Feature Engineering
features = extract_technical_indicators(data)
features = add_momentum_features(features)
features = add_volatility_features(features)
# Model Training
models = [RandomForest(), GradientBoosting(), Ridge()]
ensemble = train_ensemble(models, features, targets)
# Prediction
prediction = ensemble.predict(latest_features)
confidence = calculate_uncertainty(models, prediction)
```
**๐ Real-time Data Processing:**
- Automatic data fetching from Yahoo Finance
- Real-time feature calculation
- Dynamic model updates
- Live prediction generation
**๐ Feature Analysis:**
- Identifies most predictive technical indicators
- Shows feature importance across models
- Helps understand what drives predictions
- Guides feature engineering improvements
**๐ฏ Ensemble Intelligence:**
- Combines strengths of different algorithms
- Reduces single-model bias
- Provides uncertainty quantification
- Improves prediction robustness
""")
# Connect the interface
analyze_btn.click(
fn=analyze_stock,
inputs=[symbol_input],
outputs=[analysis_output, price_chart, prediction_chart, feature_chart]
)
# Example stocks
gr.Examples(
examples=[
["AAPL"], # Apple - tech giant
["GOOGL"], # Google - search/AI leader
["MSFT"], # Microsoft - cloud computing
["TSLA"], # Tesla - EV/energy
["NVDA"], # NVIDIA - AI/semiconductors
["AMZN"], # Amazon - e-commerce/cloud
["META"], # Meta - social media
["JPM"], # JPMorgan - banking
["JNJ"], # Johnson & Johnson - healthcare
["V"], # Visa - payments
["SPY"], # S&P 500 ETF
["QQQ"], # NASDAQ 100 ETF
["BTC-USD"], # Bitcoin
["ETH-USD"], # Ethereum
["^GSPC"], # S&P 500 Index
],
inputs=[symbol_input],
label="๐ Popular Stocks & ETFs"
)
return interface
# Global predictor instance
predictor = FinancialPredictor()
def main():
"""Funzione principale"""
print("๐ค Starting Financial AI Predictor...")
print("๐ Checking dependencies...")
# Check dependencies
try:
import yfinance as yf
import ta
from sklearn.ensemble import RandomForestRegressor
print("โ
All dependencies available")
except ImportError as e:
print(f"โ Missing dependency: {e}")
print("Install with: pip install yfinance ta scikit-learn plotly gradio pandas numpy")
return
# Test data fetch
try:
print("๐ Testing data connection...")
test_ticker = yf.Ticker("AAPL")
test_data = test_ticker.history(period="5d")
if len(test_data) > 0:
print(f"โ
Data connection OK: {len(test_data)} days of AAPL data")
else:
print("โ ๏ธ Data connection: No data returned")
except Exception as e:
print(f"โ ๏ธ Data connection test failed: {e}")
print("=" * 60)
print("๐ฏ Financial AI Predictor Features:")
print("โ
Real-time data from Yahoo Finance")
print("โ
Advanced feature engineering (50+ indicators)")
print("โ
Ensemble ML models (RF + GB + Ridge)")
print("โ
Time series cross-validation")
print("โ
Confidence interval estimation")
print("โ
Feature importance analysis")
print("โ
Multi-day forecasting")
print("=" * 60)
try:
print("๐ Creating interface...")
interface = create_interface()
print("โ
Interface created successfully")
print("\n๐ Launching Financial AI Predictor...")
print("๐ฑ Local URL: http://localhost:7860")
print("๐ Public URL will be displayed below...")
print("๐ค Ready for stock analysis!")
print("=" * 60)
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True,
debug=False
)
except KeyboardInterrupt:
print("\n\n๐ Financial AI Predictor stopped by user")
print("๐ Thanks for using the Financial AI Predictor!")
except Exception as e:
print(f"\nโ Failed to launch: {e}")
print("\n๐ง Troubleshooting:")
print("1. Check if port 7860 is available")
print("2. Install dependencies:")
print(" pip install gradio yfinance pandas numpy plotly scikit-learn ta")
print("3. Check internet connection")
print("4. Try a different port: interface.launch(server_port=7861)")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main() |