File size: 10,071 Bytes
91ac0d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
778d63d
91ac0d2
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
# ๐Ÿค– Financial AI Predictor

An advanced machine learning system for stock price prediction using ensemble models and comprehensive feature engineering.

![Python](https://img.shields.io/badge/python-v3.8+-blue.svg)
![Scikit-learn](https://img.shields.io/badge/scikit--learn-v1.0+-orange.svg)
![License](https://img.shields.io/badge/license-Educational-green.svg)
![Status](https://img.shields.io/badge/status-Active-brightgreen.svg)

## ๐ŸŽฏ Overview

Financial AI Predictor combines state-of-the-art machine learning models with advanced financial feature engineering to predict stock prices. Built with robustness and educational value in mind, it demonstrates best practices for applying ML to financial markets.

### โœจ Key Features

- ๐Ÿง  **Ensemble ML Models**: Random Forest + Gradient Boosting + Ridge Regression
- ๐Ÿ“Š **Advanced Feature Engineering**: 50+ technical indicators and market features
- โฐ **Real-time Data**: Live market data from Yahoo Finance
- ๐Ÿ”ฌ **Robust Validation**: Time series cross-validation with walk-forward analysis
- ๐ŸŽฏ **Uncertainty Quantification**: Confidence intervals and model consensus
- ๐Ÿ“ˆ **Interactive Interface**: Professional Gradio web interface
- ๐Ÿ†“ **No API Keys**: 100% free public data sources

## ๐Ÿš€ Quick Start

### Installation

```bash
# Clone the repository
git clone https://github.com/yourusername/financial-ai-predictor.git
cd financial-ai-predictor

# Install dependencies
pip install -r requirements.txt

# Run the application
python financial_ai_predictor.py
```

### Docker Setup (Optional)

```bash
# Build Docker image
docker build -t financial-ai-predictor .

# Run container
docker run -p 7860:7860 financial-ai-predictor
```

### Basic Usage

1. **Launch the app**: `python financial_ai_predictor.py`
2. **Open browser**: Navigate to `http://localhost:7860`
3. **Enter stock symbol**: e.g., "AAPL", "GOOGL", "TSLA"
4. **Click "Run AI Analysis"**: Wait for model training and prediction
5. **Review results**: Analysis report, charts, and feature importance

## ๐Ÿ“Š How It Works

### 1. Data Collection
- Downloads 2 years of historical OHLCV data from Yahoo Finance
- Real-time price and volume information
- Automatic data quality checks and cleaning

### 2. Feature Engineering
```python
# Technical Indicators
- Price momentum (5, 20 day)
- Moving averages (5, 10, 20, 50 day)
- RSI, MACD, Bollinger Bands
- ADX, Stochastic, Williams %R
- Volume indicators (OBV, CMF, VWAP)

# Market Regime Features
- Volatility ratios and regimes
- Trend strength indicators
- Gap analysis and fill rates
- Price-volume relationships
```

### 3. Model Architecture
```python
# Ensemble Models
models = {
    'random_forest': RandomForestRegressor(n_estimators=200),
    'gradient_boost': GradientBoostingRegressor(n_estimators=150),
    'ridge': Ridge(alpha=1.0)
}

# Time Series Validation
validation = TimeSeriesSplit(n_splits=5)
```

### 4. Prediction Pipeline
1. **Feature Extraction**: Calculate all technical indicators
2. **Model Inference**: Each model generates independent prediction
3. **Ensemble**: Performance-weighted average of predictions
4. **Uncertainty**: Confidence intervals from model disagreement

## ๐Ÿ“ˆ Supported Assets

- **US Stocks**: All NYSE, NASDAQ listed companies
- **International Stocks**: Major global exchanges
- **ETFs**: Index funds, sector ETFs, commodity ETFs
- **Cryptocurrencies**: BTC-USD, ETH-USD, and major coins
- **Market Indices**: S&P 500 (^GSPC), NASDAQ (^IXIC), Dow Jones

### Example Symbols
```
AAPL, GOOGL, MSFT, TSLA, NVDA, AMZN, META
SPY, QQQ, VTI, IWM, GLD, SLV
BTC-USD, ETH-USD, ADA-USD
^GSPC, ^IXIC, ^DJI, ^VIX
```

## ๐Ÿ”ฌ Technical Details

### Feature Engineering Pipeline
```python
def extract_features(data):
    features = pd.DataFrame()
    
    # Price features
    features['returns'] = data['Close'].pct_change()
    features['log_returns'] = np.log(data['Close'] / data['Close'].shift(1))
    
    # Technical indicators
    features['rsi'] = ta.momentum.rsi(data['Close'])
    features['macd'] = ta.trend.macd_diff(data['Close'])
    features['bb_position'] = calculate_bollinger_position(data['Close'])
    
    # Volume features
    features['volume_ratio'] = data['Volume'] / data['Volume'].rolling(20).mean()
    features['obv'] = ta.volume.on_balance_volume(data['Close'], data['Volume'])
    
    return features
```

### Model Training
```python
# Time series cross-validation
tscv = TimeSeriesSplit(n_splits=5)

for train_idx, val_idx in tscv.split(features):
    X_train = features.iloc[train_idx]
    y_train = targets.iloc[train_idx]
    
    model.fit(X_train, y_train)
    score = model.score(X_val, y_val)
```

### Performance Metrics
- **Rยฒ Score**: Coefficient of determination
- **MAE**: Mean Absolute Error
- **RMSE**: Root Mean Square Error
- **Directional Accuracy**: Percentage of correct direction predictions

## ๐Ÿ“Š Example Output

```
๐Ÿค– FINANCIAL AI PREDICTOR - AAPL

๐Ÿ“Š CURRENT STATUS
โ€ข Current Price: $182.50
โ€ข Analysis Date: 2025-01-15 14:30:00
โ€ข Recommendation: ๐ŸŸข BUY

๐ŸŽฏ ENSEMBLE PREDICTION
โ€ข Next Day Target: $184.20
โ€ข Expected Return: +0.93%
โ€ข Prediction Confidence: 73.5%

๐Ÿค– MODEL PERFORMANCE
โ€ข Random Forest: Rยฒ = 0.0847 ยฑ 0.0234
โ€ข Gradient Boost: Rยฒ = 0.0756 ยฑ 0.0198
โ€ข Ridge: Rยฒ = 0.0542 ยฑ 0.0156

๐Ÿง  TOP PREDICTIVE FEATURES
โ€ข rsi: 0.0234
โ€ข bb_position: 0.0198
โ€ข volume_ratio: 0.0176
โ€ข macd: 0.0145
```

## ๐ŸŽฏ Best Practices

### For Users
1. **Diversification**: Never rely on a single prediction
2. **Risk Management**: Use appropriate position sizing
3. **Validation**: Cross-check with fundamental analysis
4. **Timeframes**: Consider multiple prediction horizons
5. **Market Conditions**: Be aware of regime changes

### For Developers
1. **Feature Engineering**: Domain knowledge is crucial
2. **Validation**: Always use time series aware validation
3. **Overfitting**: Monitor out-of-sample performance
4. **Data Quality**: Clean and validate input data
5. **Model Updates**: Retrain periodically

## โš ๏ธ Important Disclaimers

### ๐ŸŽ“ Educational Purpose
This tool is designed for:
- Learning about machine learning in finance
- Understanding feature engineering techniques
- Demonstrating ensemble methods
- Exploring financial data analysis

### ๐Ÿ“‰ Risk Warnings
- **Not Financial Advice**: Predictions are for educational purposes only
- **Past Performance**: Does not guarantee future results
- **Model Limitations**: Cannot predict black swan events
- **Market Risk**: All investments carry risk of loss
- **Professional Advice**: Consult qualified financial advisors

### ๐Ÿ”ฌ Technical Limitations
- **Market Efficiency**: Predictable patterns may be arbitraged away
- **Regime Changes**: Models may fail during market shifts
- **Data Dependency**: Quality depends on input data
- **Overfitting**: Historical patterns may not persist

## ๐Ÿ› ๏ธ Configuration

### Environment Variables
```bash
# Optional: Set data cache directory
export YFINANCE_CACHE_DIR="/path/to/cache"

# Optional: Set log level
export LOG_LEVEL="INFO"
```

### Custom Configuration
```python
# Modify model parameters
MODELS_CONFIG = {
    'random_forest': {
        'n_estimators': 200,
        'max_depth': 15,
        'min_samples_split': 5
    },
    'gradient_boost': {
        'n_estimators': 150,
        'max_depth': 8,
        'learning_rate': 0.1
    }
}

# Modify feature engineering
FEATURE_CONFIG = {
    'ma_periods': [5, 10, 20, 50],
    'momentum_periods': [5, 10, 20],
    'volatility_windows': [5, 20, 60]
}
```

## ๐Ÿงช Testing

```bash
# Run basic tests
python -m pytest tests/

# Test specific components
python -m pytest tests/test_features.py
python -m pytest tests/test_models.py

# Run with coverage
pytest --cov=financial_ai_predictor tests/
```

## ๐Ÿ“š Dependencies

### Core Requirements
- **Python**: 3.8+
- **NumPy**: Scientific computing
- **Pandas**: Data manipulation
- **Scikit-learn**: Machine learning models
- **yfinance**: Financial data
- **TA**: Technical analysis indicators
- **Gradio**: Web interface
- **Plotly**: Interactive visualizations

### Optional Enhancements
- **SciPy**: Advanced statistical functions
- **Statsmodels**: Econometric models
- **Jupyter**: Interactive development

## ๐Ÿค Contributing

1. **Fork** the repository
2. **Create** a feature branch (`git checkout -b feature/amazing-feature`)
3. **Commit** your changes (`git commit -m 'Add amazing feature'`)
4. **Push** to the branch (`git push origin feature/amazing-feature`)
5. **Open** a Pull Request

### Development Setup
```bash
# Clone for development
git clone https://github.com/yourusername/financial-ai-predictor.git
cd financial-ai-predictor

# Install development dependencies
pip install -r requirements-dev.txt

# Run in development mode
python financial_ai_predictor.py --debug
```

## ๐Ÿ“ License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## ๐Ÿ™ Acknowledgments

- **Yahoo Finance**: For providing free financial data
- **TA-Lib**: Technical analysis library
- **Scikit-learn**: Machine learning framework
- **Gradio**: Easy-to-use ML interfaces
- **Plotly**: Interactive visualization library

## ๐Ÿ“ž Support

- **Issues**: [GitHub Issues](https://github.com/yourusername/financial-ai-predictor/issues)
- **Discussions**: [GitHub Discussions](https://github.com/yourusername/financial-ai-predictor/discussions)
- **Email**: your.email@example.com

## ๐Ÿ”ฎ Roadmap

### Version 2.0
- [ ] Deep learning models (LSTM, Transformer)
- [ ] Alternative data integration
- [ ] Multi-asset portfolio optimization
- [ ] Real-time streaming predictions
- [ ] Advanced risk metrics

### Version 1.5
- [ ] Options pricing models
- [ ] Sector rotation analysis
- [ ] Economic indicators integration
- [ ] Backtesting framework
- [ ] Performance attribution

---

**โญ Star this repository if you find it useful!**

**๐Ÿ› Found a bug? Please open an issue.**

**๐Ÿ’ก Have an idea? Start a discussion.**

---

*Built with โค๏ธ for the financial ML community*