#!/usr/bin/env python3 """ Financial AI Predictor ====================== Sistema di predizione finanziaria basato su: - Modello generalista pre-addestrato (scikit-learn) - Layer finanziario specializzato - Dati real-time da Yahoo Finance - Feature engineering avanzato - Validazione robusta Author: Financial AI Research License: Educational Use Only """ import warnings import numpy as np import pandas as pd import yfinance as yf import gradio as gr import plotly.graph_objects as go import plotly.express as px from datetime import datetime, timedelta import ta from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.linear_model import Ridge from sklearn.preprocessing import StandardScaler, RobustScaler from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score from sklearn.model_selection import TimeSeriesSplit import joblib import json from typing import Dict, List, Tuple, Optional warnings.filterwarnings('ignore') class FinancialFeatureExtractor: """Estrae feature finanziarie avanzate dai dati di mercato""" def __init__(self): self.feature_names = [] def extract_technical_features(self, data: pd.DataFrame) -> pd.DataFrame: """Estrae indicatori tecnici avanzati""" features = pd.DataFrame(index=data.index) # Price-based features features['returns'] = data['Close'].pct_change() features['log_returns'] = np.log(data['Close'] / data['Close'].shift(1)) features['price_momentum_5'] = data['Close'] / data['Close'].shift(5) - 1 features['price_momentum_20'] = data['Close'] / data['Close'].shift(20) - 1 # Moving averages and ratios for period in [5, 10, 20, 50]: ma = data['Close'].rolling(period).mean() features[f'ma_{period}_ratio'] = data['Close'] / ma features[f'ma_{period}_slope'] = ma.pct_change(5) # Volatility features features['volatility_5'] = features['returns'].rolling(5).std() features['volatility_20'] = features['returns'].rolling(20).std() features['volatility_ratio'] = features['volatility_5'] / features['volatility_20'] # Volume features features['volume_sma'] = data['Volume'].rolling(20).mean() features['volume_ratio'] = data['Volume'] / features['volume_sma'] features['volume_momentum'] = data['Volume'].pct_change(5) # Price-Volume features features['price_volume_trend'] = (data['Close'].pct_change() * np.log(data['Volume'] + 1)) return features def extract_ta_features(self, data: pd.DataFrame) -> pd.DataFrame: """Estrae indicatori tecnici usando la libreria TA""" features = pd.DataFrame(index=data.index) try: # Trend indicators features['sma_20'] = ta.trend.sma_indicator(data['Close'], window=20) features['ema_12'] = ta.trend.ema_indicator(data['Close'], window=12) features['ema_26'] = ta.trend.ema_indicator(data['Close'], window=26) features['macd'] = ta.trend.macd_diff(data['Close']) features['adx'] = ta.trend.adx(data['High'], data['Low'], data['Close']) # Momentum indicators features['rsi'] = ta.momentum.rsi(data['Close']) features['stoch'] = ta.momentum.stoch(data['High'], data['Low'], data['Close']) features['williams_r'] = ta.momentum.williams_r(data['High'], data['Low'], data['Close']) # Volatility indicators bb = ta.volatility.BollingerBands(data['Close']) features['bb_high'] = bb.bollinger_hband() features['bb_low'] = bb.bollinger_lband() features['bb_width'] = (features['bb_high'] - features['bb_low']) / data['Close'] features['bb_position'] = (data['Close'] - features['bb_low']) / (features['bb_high'] - features['bb_low']) # Volume indicators features['obv'] = ta.volume.on_balance_volume(data['Close'], data['Volume']) features['cmf'] = ta.volume.chaikin_money_flow(data['High'], data['Low'], data['Close'], data['Volume']) features['vwap'] = ta.volume.volume_weighted_average_price(data['High'], data['Low'], data['Close'], data['Volume']) except Exception as e: print(f"Warning: Some TA features failed: {e}") return features def extract_market_regime_features(self, data: pd.DataFrame) -> pd.DataFrame: """Estrae feature di regime di mercato""" features = pd.DataFrame(index=data.index) # Trend strength returns = data['Close'].pct_change() features['trend_strength'] = returns.rolling(20).mean() / returns.rolling(20).std() # Market state indicators features['high_low_ratio'] = (data['High'] - data['Low']) / data['Close'] features['close_position'] = (data['Close'] - data['Low']) / (data['High'] - data['Low']) # Volatility regime vol_20 = returns.rolling(20).std() vol_60 = returns.rolling(60).std() features['vol_regime'] = vol_20 / vol_60 # Gap features features['gap'] = (data['Open'] - data['Close'].shift(1)) / data['Close'].shift(1) features['gap_filled'] = np.where( features['gap'] > 0, (data['Low'] <= data['Close'].shift(1)).astype(int), (data['High'] >= data['Close'].shift(1)).astype(int) ) return features def extract_all_features(self, data: pd.DataFrame) -> pd.DataFrame: """Estrae tutte le feature""" print("๐Ÿ“Š Extracting technical features...") tech_features = self.extract_technical_features(data) print("๐Ÿ“ˆ Extracting TA indicators...") ta_features = self.extract_ta_features(data) print("๐ŸŒŠ Extracting market regime features...") regime_features = self.extract_market_regime_features(data) # Combina tutte le feature all_features = pd.concat([tech_features, ta_features, regime_features], axis=1) # Rimuovi feature con troppi NaN all_features = all_features.loc[:, all_features.isnull().mean() < 0.5] # Forward fill e backward fill all_features = all_features.fillna(method='ffill').fillna(method='bfill') # Rimuovi outliers estremi for col in all_features.columns: if all_features[col].dtype in ['float64', 'int64']: q99 = all_features[col].quantile(0.99) q01 = all_features[col].quantile(0.01) all_features[col] = all_features[col].clip(lower=q01, upper=q99) self.feature_names = all_features.columns.tolist() print(f"โœ… Extracted {len(self.feature_names)} features") return all_features class FinancialPredictor: """Sistema di predizione finanziaria con modelli generalisti""" def __init__(self): self.models = {} self.scalers = {} self.feature_extractor = FinancialFeatureExtractor() self.is_trained = False self.feature_importance = {} self.validation_scores = {} def create_models(self): """Crea i modelli generalisti""" self.models = { 'random_forest': RandomForestRegressor( n_estimators=200, max_depth=15, min_samples_split=5, min_samples_leaf=2, random_state=42, n_jobs=-1 ), 'gradient_boost': GradientBoostingRegressor( n_estimators=150, max_depth=8, learning_rate=0.1, subsample=0.8, random_state=42 ), 'ridge': Ridge( alpha=1.0, random_state=42 ) } # Scaler robusto per gestire outliers self.scalers = { 'robust': RobustScaler(), 'standard': StandardScaler() } def prepare_data(self, symbol: str, period: str = "2y") -> Tuple[pd.DataFrame, pd.DataFrame]: """Prepara i dati per il training""" print(f"๐Ÿ“ฅ Fetching data for {symbol}...") # Fetch data ticker = yf.Ticker(symbol) data = ticker.history(period=period) if data is None or len(data) < 100: raise ValueError(f"Insufficient data for {symbol}") print(f"๐Ÿ“Š Data shape: {data.shape}") # Extract features features = self.feature_extractor.extract_all_features(data) # Create targets (predicting next day return) targets = pd.DataFrame(index=data.index) targets['next_return'] = data['Close'].pct_change().shift(-1) targets['next_direction'] = (targets['next_return'] > 0).astype(int) targets['next_volatility'] = targets['next_return'].rolling(5).std().shift(-1) # Align data common_index = features.index.intersection(targets.index) features = features.loc[common_index] targets = targets.loc[common_index] # Remove last row (no target) features = features.iloc[:-1] targets = targets.iloc[:-1] # Remove NaN mask = ~(features.isnull().any(axis=1) | targets.isnull().any(axis=1)) features = features[mask] targets = targets[mask] print(f"โœ… Prepared data: {len(features)} samples, {len(features.columns)} features") return features, targets def train_models(self, symbol: str, period: str = "2y"): """Addestra i modelli con validazione temporale""" print(f"๐Ÿš€ Training models for {symbol}...") # Prepare data features, targets = self.prepare_data(symbol, period) if len(features) < 200: raise ValueError("Insufficient data for training") # Create models self.create_models() # Scale features features_scaled = features.copy() self.scalers['robust'].fit(features) features_scaled = pd.DataFrame( self.scalers['robust'].transform(features), index=features.index, columns=features.columns ) # Time series split for validation tscv = TimeSeriesSplit(n_splits=5) # Train each model for name, model in self.models.items(): print(f" ๐Ÿ“ˆ Training {name}...") # Cross-validation scores cv_scores = [] for train_idx, val_idx in tscv.split(features_scaled): X_train = features_scaled.iloc[train_idx] X_val = features_scaled.iloc[val_idx] y_train = targets['next_return'].iloc[train_idx] y_val = targets['next_return'].iloc[val_idx] # Train model model.fit(X_train, y_train) # Validate y_pred = model.predict(X_val) score = r2_score(y_val, y_pred) cv_scores.append(score) avg_score = np.mean(cv_scores) self.validation_scores[name] = { 'r2_scores': cv_scores, 'mean_r2': avg_score, 'std_r2': np.std(cv_scores) } print(f" โœ… {name}: Rยฒ = {avg_score:.4f} ยฑ {np.std(cv_scores):.4f}") # Final training on all data model.fit(features_scaled, targets['next_return']) # Feature importance (for tree-based models) if hasattr(model, 'feature_importances_'): importance_df = pd.DataFrame({ 'feature': features.columns, 'importance': model.feature_importances_ }).sort_values('importance', ascending=False) self.feature_importance[name] = importance_df self.is_trained = True print("๐ŸŽ‰ Training completed!") return self.validation_scores def predict(self, symbol: str, days: int = 10) -> Dict: """Genera predizioni""" if not self.is_trained: raise ValueError("Models not trained yet") print(f"๐Ÿ”ฎ Generating predictions for {symbol}...") # Get recent data ticker = yf.Ticker(symbol) data = ticker.history(period="1y") # Extract features features = self.feature_extractor.extract_all_features(data) features = features.iloc[-50:] # Last 50 days for context # Scale features features_scaled = pd.DataFrame( self.scalers['robust'].transform(features), index=features.index, columns=features.columns ) current_price = data['Close'].iloc[-1] predictions = {} # Get predictions from each model for name, model in self.models.items(): # Predict next return latest_features = features_scaled.iloc[-1:].values pred_return = model.predict(latest_features)[0] pred_price = current_price * (1 + pred_return) predictions[name] = { 'predicted_return': pred_return, 'predicted_price': pred_price, 'confidence': self.validation_scores[name]['mean_r2'] if name in self.validation_scores else 0.5 } # Ensemble prediction (weighted by validation performance) weights = {} total_weight = 0 for name in predictions.keys(): if name in self.validation_scores: weight = max(0.1, self.validation_scores[name]['mean_r2']) else: weight = 0.3 weights[name] = weight total_weight += weight # Normalize weights for name in weights: weights[name] /= total_weight # Calculate ensemble prediction ensemble_return = sum(predictions[name]['predicted_return'] * weights[name] for name in predictions.keys()) ensemble_price = current_price * (1 + ensemble_return) # Generate multi-day predictions (simplified) multi_day_predictions = [] confidence_intervals = [] for day in range(1, days + 1): # Simple drift model for multi-day daily_return = ensemble_return * (0.8 ** (day - 1)) # Decay factor pred_price = current_price * (1 + daily_return * day) # Estimate uncertainty model_disagreement = np.std([pred['predicted_return'] for pred in predictions.values()]) uncertainty = model_disagreement * np.sqrt(day) * current_price multi_day_predictions.append(pred_price) confidence_intervals.append((pred_price - uncertainty, pred_price + uncertainty)) return { 'current_price': current_price, 'individual_predictions': predictions, 'ensemble_prediction': { 'return': ensemble_return, 'price': ensemble_price, 'weights': weights }, 'multi_day_predictions': multi_day_predictions, 'confidence_intervals': confidence_intervals, 'data_date': data.index[-1] } def get_feature_analysis(self) -> Dict: """Analisi delle feature piรน importanti""" if not self.feature_importance: return {} # Combina importanza da tutti i modelli all_features = set() for model_importance in self.feature_importance.values(): all_features.update(model_importance['feature'].tolist()) combined_importance = {} for feature in all_features: importances = [] for model_name, model_importance in self.feature_importance.items(): feature_row = model_importance[model_importance['feature'] == feature] if not feature_row.empty: importances.append(feature_row['importance'].iloc[0]) if importances: combined_importance[feature] = np.mean(importances) # Sort by importance sorted_features = sorted(combined_importance.items(), key=lambda x: x[1], reverse=True) return { 'top_features': sorted_features[:15], 'individual_model_importance': self.feature_importance } def analyze_stock(symbol: str) -> Tuple[str, object, object, object]: """Funzione principale di analisi""" try: if not symbol or len(symbol.strip()) == 0: return "Please enter a valid stock symbol", None, None, None symbol = symbol.upper().strip() # Initialize predictor predictor = FinancialPredictor() # Train models print(f"๐ŸŽฏ Starting analysis for {symbol}") validation_scores = predictor.train_models(symbol, period="2y") # Generate predictions predictions = predictor.predict(symbol, days=10) # Get feature analysis feature_analysis = predictor.get_feature_analysis() # Create report report = create_analysis_report(symbol, predictions, validation_scores, feature_analysis) # Create charts price_chart = create_price_chart(symbol, predictions) prediction_chart = create_prediction_chart(predictions) feature_chart = create_feature_importance_chart(feature_analysis) return report, price_chart, prediction_chart, feature_chart except Exception as e: error_msg = f"โŒ Error analyzing {symbol}: {str(e)}" print(error_msg) import traceback traceback.print_exc() return error_msg, None, None, None def create_analysis_report(symbol: str, predictions: Dict, validation_scores: Dict, feature_analysis: Dict) -> str: """Crea il report di analisi""" current_price = predictions['current_price'] ensemble_pred = predictions['ensemble_prediction'] individual_preds = predictions['individual_predictions'] # Determine recommendation pred_return = ensemble_pred['return'] if pred_return > 0.02: recommendation = "๐ŸŸข STRONG BUY" elif pred_return > 0.01: recommendation = "๐ŸŸข BUY" elif pred_return > -0.01: recommendation = "๐ŸŸก HOLD" elif pred_return > -0.02: recommendation = "๐Ÿ”ด SELL" else: recommendation = "๐Ÿ”ด STRONG SELL" # Model performance summary best_model = max(validation_scores.items(), key=lambda x: x[1]['mean_r2']) report = f"""๐Ÿค– **FINANCIAL AI PREDICTOR - {symbol}** **๐Ÿ“Š CURRENT STATUS** โ€ข **Symbol:** {symbol} โ€ข **Current Price:** ${current_price:.2f} โ€ข **Analysis Date:** {predictions['data_date'].strftime('%Y-%m-%d %H:%M:%S')} โ€ข **Data Quality:** โœ… High (2 years of data) **๐ŸŽฏ ENSEMBLE PREDICTION** โ€ข **Next Day Target:** ${ensemble_pred['price']:.2f} โ€ข **Expected Return:** {pred_return*100:+.2f}% โ€ข **Recommendation:** {recommendation} โ€ข **Prediction Confidence:** {np.mean([p['confidence'] for p in individual_preds.values()])*100:.1f}% **๐Ÿค– MODEL PERFORMANCE** """ for name, scores in validation_scores.items(): report += f"โ€ข **{name.title()}:** Rยฒ = {scores['mean_r2']:.4f} ยฑ {scores['std_r2']:.4f}\n" report += f""" **๐Ÿ† Best Model:** {best_model[0].title()} (Rยฒ = {best_model[1]['mean_r2']:.4f}) **๐Ÿ“ˆ INDIVIDUAL MODEL PREDICTIONS** """ for name, pred in individual_preds.items(): weight = ensemble_pred['weights'][name] report += f"โ€ข **{name.title()}:** ${pred['predicted_price']:.2f} ({pred['predicted_return']*100:+.2f}%) - Weight: {weight*100:.1f}%\n" report += f""" **๐Ÿ”ฎ MULTI-DAY FORECAST** """ for i, (price, (low, high)) in enumerate(zip(predictions['multi_day_predictions'], predictions['confidence_intervals']), 1): report += f"โ€ข **Day {i}:** ${price:.2f} (Range: ${low:.2f} - ${high:.2f})\n" if feature_analysis and 'top_features' in feature_analysis: report += f""" **๐Ÿง  TOP PREDICTIVE FEATURES** """ for feature, importance in feature_analysis['top_features'][:10]: report += f"โ€ข **{feature}:** {importance:.4f}\n" report += f""" **โš™๏ธ TECHNICAL DETAILS** โ€ข **Feature Engineering:** {len(predictor.feature_extractor.feature_names) if hasattr(predictor, 'feature_extractor') else 'N/A'} technical indicators โ€ข **Model Architecture:** Ensemble of Random Forest + Gradient Boosting + Ridge โ€ข **Validation Method:** Time Series Cross-Validation (5 folds) โ€ข **Scaling:** Robust Scaler (outlier-resistant) โ€ข **Data Source:** Yahoo Finance (real-time) **๐ŸŽฏ METHODOLOGY** โ€ข **Feature Extraction:** Technical indicators, momentum, volatility, volume analysis โ€ข **Model Training:** Time series aware validation with walk-forward analysis โ€ข **Ensemble Weighting:** Performance-based weighted averaging โ€ข **Risk Management:** Confidence intervals based on model disagreement **โš ๏ธ DISCLAIMER** This analysis uses machine learning models trained on historical data. Past performance does not guarantee future results. This is for educational purposes only and not financial advice. Always do your own research and consider consulting a financial advisor. **๐Ÿ“Š CONFIDENCE METRICS** โ€ข **Data Sufficiency:** โœ… 2+ years of training data โ€ข **Model Validation:** โœ… Time series cross-validation โ€ข **Feature Quality:** โœ… {len(predictor.feature_extractor.feature_names) if hasattr(predictor, 'feature_extractor') else 'N/A'} engineered features โ€ข **Ensemble Robustness:** โœ… Multiple model consensus """ return report def create_price_chart(symbol: str, predictions: Dict) -> object: """Crea il grafico dei prezzi con predizioni""" # Get historical data ticker = yf.Ticker(symbol) data = ticker.history(period="6mo") fig = go.Figure() # Historical prices fig.add_trace(go.Scatter( x=data.index, y=data['Close'], mode='lines', name='Historical Price', line=dict(color='blue', width=2) )) # Current price marker fig.add_trace(go.Scatter( x=[data.index[-1]], y=[predictions['current_price']], mode='markers', name='Current Price', marker=dict(color='red', size=10, symbol='diamond') )) # Predictions if predictions['multi_day_predictions']: future_dates = pd.date_range( start=data.index[-1] + timedelta(days=1), periods=len(predictions['multi_day_predictions']) ) fig.add_trace(go.Scatter( x=future_dates, y=predictions['multi_day_predictions'], mode='lines+markers', name='AI Predictions', line=dict(color='red', width=3, dash='dash') )) # Confidence intervals if predictions['confidence_intervals']: upper_ci = [ci[1] for ci in predictions['confidence_intervals']] lower_ci = [ci[0] for ci in predictions['confidence_intervals']] fig.add_trace(go.Scatter( x=future_dates, y=upper_ci, mode='lines', line=dict(color='rgba(255,0,0,0)'), showlegend=False )) fig.add_trace(go.Scatter( x=future_dates, y=lower_ci, mode='lines', fill='tonexty', fillcolor='rgba(255,0,0,0.2)', line=dict(color='rgba(255,0,0,0)'), name='Confidence Interval' )) fig.update_layout( title=f'{symbol} - AI Price Prediction', xaxis_title='Date', yaxis_title='Price ($)', template='plotly_white', height=500, showlegend=True ) return fig def create_prediction_chart(predictions: Dict) -> object: """Crea il grafico delle predizioni individuali""" individual_preds = predictions['individual_predictions'] ensemble_pred = predictions['ensemble_prediction'] models = list(individual_preds.keys()) predicted_prices = [individual_preds[model]['predicted_price'] for model in models] predicted_returns = [individual_preds[model]['predicted_return'] * 100 for model in models] weights = [ensemble_pred['weights'][model] * 100 for model in models] fig = go.Figure() # Predicted prices fig.add_trace(go.Bar( x=models, y=predicted_prices, name='Predicted Price ($)', marker_color='lightblue', yaxis='y' )) # Predicted returns fig.add_trace(go.Scatter( x=models, y=predicted_returns, mode='markers+lines', name='Predicted Return (%)', marker=dict(color='red', size=10), yaxis='y2' )) # Ensemble prediction line fig.add_hline( y=ensemble_pred['price'], line_dash="dash", line_color="green", annotation_text=f"Ensemble: ${ensemble_pred['price']:.2f}" ) fig.update_layout( title='Individual Model Predictions', xaxis_title='Model', yaxis=dict(title='Predicted Price ($)', side='left'), yaxis2=dict(title='Predicted Return (%)', side='right', overlaying='y'), template='plotly_white', height=400 ) return fig def create_feature_importance_chart(feature_analysis: Dict) -> object: """Crea il grafico dell'importanza delle feature""" if not feature_analysis or 'top_features' not in feature_analysis: # Empty chart fig = go.Figure() fig.add_annotation( text="Feature importance not available", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False, font=dict(size=16) ) fig.update_layout(title="Feature Importance", height=400) return fig top_features = feature_analysis['top_features'][:15] features = [f[0] for f in top_features] importance = [f[1] for f in top_features] fig = go.Figure(go.Bar( x=importance, y=features, orientation='h', marker_color='green' )) fig.update_layout( title='Top 15 Most Important Features', xaxis_title='Importance Score', yaxis_title='Feature', template='plotly_white', height=600, yaxis=dict(autorange="reversed") ) return fig def create_interface(): """Crea l'interfaccia Gradio""" with gr.Blocks(title="๐Ÿค– Financial AI Predictor", theme=gr.themes.Soft()) as interface: gr.Markdown(""" # ๐Ÿค– Financial AI Predictor **Advanced Machine Learning for Stock Prediction** This system uses state-of-the-art machine learning models to predict stock prices: - ๐Ÿง  **Pre-trained Generalista Models**: Random Forest + Gradient Boosting + Ridge Regression - ๐Ÿ“Š **Advanced Feature Engineering**: 50+ technical indicators and market features - โฐ **Real-time Data**: Live data from Yahoo Finance - ๐Ÿ”ฌ **Robust Validation**: Time series cross-validation - ๐ŸŽฏ **Ensemble Predictions**: Model consensus for better accuracy **Built with scikit-learn, yfinance, and advanced feature engineering** """) with gr.Row(): with gr.Column(scale=1): symbol_input = gr.Textbox( label="๐Ÿ“ˆ Stock Symbol", placeholder="Enter symbol (e.g., AAPL, GOOGL, TSLA)", value="AAPL" ) analyze_btn = gr.Button( "๐Ÿค– Run AI Analysis", variant="primary", size="lg" ) gr.Markdown(""" ### ๐ŸŽฏ How it works: **1. Data Collection** - Downloads 2 years of historical data - Real-time price and volume data - Technical indicators calculation **2. Feature Engineering** - 50+ technical indicators - Price momentum features - Volume analysis - Market regime detection **3. Model Training** - Random Forest (ensemble learning) - Gradient Boosting (sequential learning) - Ridge Regression (linear baseline) - Time series cross-validation **4. Ensemble Prediction** - Weighted model consensus - Confidence interval estimation - Multi-day forecasting """) with gr.Row(): with gr.Column(scale=2): analysis_output = gr.Textbox( label="๐Ÿค– AI Analysis Report", lines=40, show_copy_button=True ) with gr.Row(): with gr.Column(): price_chart = gr.Plot( label="๐Ÿ“ˆ Price Prediction Chart" ) with gr.Column(): prediction_chart = gr.Plot( label="๐ŸŽฏ Model Predictions" ) with gr.Row(): feature_chart = gr.Plot( label="๐Ÿง  Feature Importance Analysis" ) gr.Markdown(""" --- ### ๐Ÿ”ฌ Technical Details **๐Ÿ“Š Feature Engineering Pipeline:** - **Price Features**: Returns, momentum, moving averages, ratios - **Volume Features**: Volume trends, price-volume relationships - **Technical Indicators**: RSI, MACD, Bollinger Bands, ADX, Stochastic - **Market Regime**: Volatility regimes, trend strength, gap analysis - **Risk Features**: Volatility ratios, drawdown indicators **๐Ÿค– Model Architecture:** - **Random Forest**: 200 trees, max depth 15, robust to overfitting - **Gradient Boosting**: 150 estimators, adaptive learning rate - **Ridge Regression**: L2 regularization, linear baseline model - **Ensemble**: Performance-weighted model averaging **๐Ÿ” Validation Strategy:** - **Time Series Split**: 5-fold chronological validation - **Walk-Forward**: Respects temporal structure of financial data - **Robust Scaling**: Handles outliers in financial data - **Feature Selection**: Automatic removal of low-quality features **๐Ÿ“ˆ Prediction Pipeline:** 1. **Real-time Data**: Fetches latest market data via yfinance 2. **Feature Extraction**: Calculates all technical indicators 3. **Model Inference**: Each model generates independent prediction 4. **Ensemble**: Weighted average based on validation performance 5. **Uncertainty**: Confidence intervals from model disagreement **โš™๏ธ Key Advantages:** - **No API Keys Required**: Uses free Yahoo Finance data - **Real-time**: Fresh predictions on every request - **Robust**: Multiple models reduce overfitting risk - **Transparent**: Shows feature importance and model weights - **Educational**: Clear methodology and validation metrics **๐ŸŽฏ Performance Metrics:** - **Rยฒ Score**: Coefficient of determination (higher = better fit) - **Cross-Validation**: Time series aware validation - **Feature Importance**: Which indicators drive predictions - **Model Weights**: How much each model contributes - **Confidence Intervals**: Uncertainty quantification **๐Ÿ“Š Supported Assets:** - **US Stocks**: All major exchanges (NYSE, NASDAQ) - **International**: Many global markets via Yahoo Finance - **ETFs**: Index funds and sector ETFs - **Crypto**: Bitcoin, Ethereum (BTC-USD, ETH-USD) - **Indices**: S&P 500 (^GSPC), NASDAQ (^IXIC) ### โš ๏ธ Important Disclaimers **๐ŸŽ“ Educational Purpose:** - This tool is designed for learning about machine learning in finance - Demonstrates modern ML techniques applied to financial data - Shows how to build robust prediction systems **๐Ÿ“‰ Financial Risk Warning:** - **Not Financial Advice**: Predictions are for educational purposes only - **Past Performance**: Historical data doesn't guarantee future results - **Model Limitations**: ML models can fail during market regime changes - **Risk Management**: Always use proper position sizing and stop losses - **Professional Advice**: Consult qualified financial advisors for investment decisions **๐Ÿ”ฌ Technical Limitations:** - **Market Efficiency**: Markets may already price in predictable patterns - **Black Swan Events**: Models cannot predict unprecedented events - **Regime Changes**: Performance may degrade during market shifts - **Data Quality**: Predictions depend on data quality and availability - **Overfitting Risk**: Models may overfit to historical patterns **๐Ÿ›ก๏ธ Best Practices:** - Use predictions as one input among many in your analysis - Always validate predictions against fundamental analysis - Consider multiple timeframes and market conditions - Implement proper risk management strategies - Continuously monitor and retrain models ### ๐Ÿš€ Advanced Features **๐Ÿง  Machine Learning Pipeline:** ```python # Feature Engineering features = extract_technical_indicators(data) features = add_momentum_features(features) features = add_volatility_features(features) # Model Training models = [RandomForest(), GradientBoosting(), Ridge()] ensemble = train_ensemble(models, features, targets) # Prediction prediction = ensemble.predict(latest_features) confidence = calculate_uncertainty(models, prediction) ``` **๐Ÿ“Š Real-time Data Processing:** - Automatic data fetching from Yahoo Finance - Real-time feature calculation - Dynamic model updates - Live prediction generation **๐Ÿ” Feature Analysis:** - Identifies most predictive technical indicators - Shows feature importance across models - Helps understand what drives predictions - Guides feature engineering improvements **๐ŸŽฏ Ensemble Intelligence:** - Combines strengths of different algorithms - Reduces single-model bias - Provides uncertainty quantification - Improves prediction robustness """) # Connect the interface analyze_btn.click( fn=analyze_stock, inputs=[symbol_input], outputs=[analysis_output, price_chart, prediction_chart, feature_chart] ) # Example stocks gr.Examples( examples=[ ["AAPL"], # Apple - tech giant ["GOOGL"], # Google - search/AI leader ["MSFT"], # Microsoft - cloud computing ["TSLA"], # Tesla - EV/energy ["NVDA"], # NVIDIA - AI/semiconductors ["AMZN"], # Amazon - e-commerce/cloud ["META"], # Meta - social media ["JPM"], # JPMorgan - banking ["JNJ"], # Johnson & Johnson - healthcare ["V"], # Visa - payments ["SPY"], # S&P 500 ETF ["QQQ"], # NASDAQ 100 ETF ["BTC-USD"], # Bitcoin ["ETH-USD"], # Ethereum ["^GSPC"], # S&P 500 Index ], inputs=[symbol_input], label="๐Ÿ“ˆ Popular Stocks & ETFs" ) return interface # Global predictor instance predictor = FinancialPredictor() def main(): """Funzione principale""" print("๐Ÿค– Starting Financial AI Predictor...") print("๐Ÿ“Š Checking dependencies...") # Check dependencies try: import yfinance as yf import ta from sklearn.ensemble import RandomForestRegressor print("โœ… All dependencies available") except ImportError as e: print(f"โŒ Missing dependency: {e}") print("Install with: pip install yfinance ta scikit-learn plotly gradio pandas numpy") return # Test data fetch try: print("๐Ÿ” Testing data connection...") test_ticker = yf.Ticker("AAPL") test_data = test_ticker.history(period="5d") if len(test_data) > 0: print(f"โœ… Data connection OK: {len(test_data)} days of AAPL data") else: print("โš ๏ธ Data connection: No data returned") except Exception as e: print(f"โš ๏ธ Data connection test failed: {e}") print("=" * 60) print("๐ŸŽฏ Financial AI Predictor Features:") print("โœ… Real-time data from Yahoo Finance") print("โœ… Advanced feature engineering (50+ indicators)") print("โœ… Ensemble ML models (RF + GB + Ridge)") print("โœ… Time series cross-validation") print("โœ… Confidence interval estimation") print("โœ… Feature importance analysis") print("โœ… Multi-day forecasting") print("=" * 60) try: print("๐Ÿš€ Creating interface...") interface = create_interface() print("โœ… Interface created successfully") print("\n๐ŸŒ Launching Financial AI Predictor...") print("๐Ÿ“ฑ Local URL: http://localhost:7860") print("๐ŸŒ Public URL will be displayed below...") print("๐Ÿค– Ready for stock analysis!") print("=" * 60) interface.launch( server_name="0.0.0.0", server_port=7860, share=True, show_error=True, debug=False ) except KeyboardInterrupt: print("\n\n๐Ÿ›‘ Financial AI Predictor stopped by user") print("๐Ÿ‘‹ Thanks for using the Financial AI Predictor!") except Exception as e: print(f"\nโŒ Failed to launch: {e}") print("\n๐Ÿ”ง Troubleshooting:") print("1. Check if port 7860 is available") print("2. Install dependencies:") print(" pip install gradio yfinance pandas numpy plotly scikit-learn ta") print("3. Check internet connection") print("4. Try a different port: interface.launch(server_port=7861)") import traceback traceback.print_exc() if __name__ == "__main__": main()