File size: 4,566 Bytes
5d54e97
 
 
d3c4eaa
5d54e97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3c4eaa
6e4f503
5d54e97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20bec0f
 
5d54e97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3c4eaa
 
5d54e97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3c4eaa
5d54e97
 
 
 
 
 
d3c4eaa
5d54e97
 
 
 
 
 
 
d3c4eaa
5d54e97
 
 
 
 
 
 
 
 
 
 
d3c4eaa
5d54e97
 
 
 
 
 
 
d3c4eaa
5d54e97
 
 
 
 
 
 
d3c4eaa
5d54e97
 
 
 
6e4f503
 
 
 
5d54e97
 
 
 
 
d3c4eaa
5d54e97
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import gradio as gr
import numpy as np
import random
import spaces 
from diffusers import ChromaPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "lodestones/Chroma1-HD"

if torch.cuda.is_available():
    torch_dtype = torch.bfloat16
else:
    torch_dtype = torch.float32

pipe = ChromaPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

@spaces.GPU() 
def infer(prompt, negative_prompt="low quality, ugly, unfinished, out of focus, deformed, disfigure, blurry, smudged, restricted palette, flat colors", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.0, num_inference_steps=40, progress=gr.Progress(track_tqdm=True)):

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    generator = torch.Generator(device).manual_seed(seed)
    
    image = pipe(
        prompt=prompt, 
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale, 
        num_inference_steps=num_inference_steps, 
        width=width, 
        height=height,
        generator=generator,
        num_images_per_prompt=1
    ).images[0] 
    
    return image, seed

examples = [
    "A high-fashion close-up portrait of a blonde woman in clear sunglasses. The image uses a bold teal and red color split for dramatic lighting. The background is a simple teal-green. The photo is sharp and well-composed, and is designed for viewing with anaglyph 3D glasses for optimal effect. It looks professionally done.",
    "A dog eating pizza",
    "The spirit of a tamagotchi wandering in San Francisco",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 760px;
}
#button{
    align-self: stretch;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Chroma1-HD
        [Chroma1-HD](https://huggingface.co/lodestones/Chroma1-HD) is an 8.9B parameter text-to-image foundational model based on FLUX.1-schnell
        """)
        
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                max_lines=1,
                placeholder="Enter your prompt",
            )
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                value="low quality, ugly, unfinished, out of focus, deformed, disfigure, blurry, smudged, restricted palette, flat colors"
            )
        
        with gr.Row():
            run_button = gr.Button("Run", scale=1, elem_id="button")
        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
        
            
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=1.0,
                maximum=10.0,
                step=0.1,
                value=3.0, 
            )
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=433, 
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024, 
                )
            
            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=1,
                maximum=100,
                step=1,
                value=40, 
            )
        
        gr.Examples(
            examples=examples,
            inputs=[prompt],
            outputs=[result, seed],
            fn=infer,
            cache_examples="lazy"
        )
    
    gr.on(
        triggers=[run_button.click, prompt.submit, negative_prompt.submit],
        fn=infer,
        inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result, seed]
    )

demo.queue().launch()