import gradio as gr import numpy as np import random import spaces from diffusers import ChromaPipeline import torch device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "lodestones/Chroma1-HD" if torch.cuda.is_available(): torch_dtype = torch.bfloat16 else: torch_dtype = torch.float32 pipe = ChromaPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) pipe = pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 @spaces.GPU() def infer(prompt, negative_prompt="low quality, ugly, unfinished, out of focus, deformed, disfigure, blurry, smudged, restricted palette, flat colors", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.0, num_inference_steps=40, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device).manual_seed(seed) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, num_images_per_prompt=1 ).images[0] return image, seed examples = [ "A high-fashion close-up portrait of a blonde woman in clear sunglasses. The image uses a bold teal and red color split for dramatic lighting. The background is a simple teal-green. The photo is sharp and well-composed, and is designed for viewing with anaglyph 3D glasses for optimal effect. It looks professionally done.", "A dog eating pizza", "The spirit of a tamagotchi wandering in San Francisco", ] css=""" #col-container { margin: 0 auto; max-width: 760px; } #button{ align-self: stretch; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # Chroma1-HD [Chroma1-HD](https://huggingface.co/lodestones/Chroma1-HD) is an 8.9B parameter text-to-image foundational model based on FLUX.1-schnell """) with gr.Row(): prompt = gr.Text( label="Prompt", max_lines=1, placeholder="Enter your prompt", ) negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", value="low quality, ugly, unfinished, out of focus, deformed, disfigure, blurry, smudged, restricted palette, flat colors" ) with gr.Row(): run_button = gr.Button("Run", scale=1, elem_id="button") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=3.0, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=433, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=100, step=1, value=40, ) gr.Examples( examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit, negative_prompt.submit], fn=infer, inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs=[result, seed] ) demo.queue().launch()