Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import spaces #[uncomment to use ZeroGPU] | |
| from diffusers import DiffusionPipeline | |
| import torch | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model_repo_id = "black-forest-labs/FLUX.1-dev" #Replace to the model you would like to use | |
| if torch.cuda.is_available(): | |
| torch_dtype = torch.bfloat16 | |
| else: | |
| torch_dtype = torch.float32 | |
| pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype, custom_pipeline="pipeline_flux_with_cfg") | |
| pipe = pipe.to(device) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| #[uncomment to use ZeroGPU] | |
| def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, true_guidance, num_inference_steps, lora_model, progress=gr.Progress(track_tqdm=True)): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| pipe.unload_lora_weights() | |
| if lora_model: | |
| pipe.load_lora_weights(lora_model) | |
| image = pipe( | |
| prompt = prompt, | |
| negative_prompt = negative_prompt, | |
| guidance_scale = guidance_scale, | |
| true_cfg = true_guidance, | |
| num_inference_steps = num_inference_steps, | |
| width = width, | |
| height = height, | |
| generator = generator | |
| ).images[0] | |
| return image, seed | |
| examples = [ | |
| "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
| "An astronaut riding a green horse", | |
| "A delicious ceviche cheesecake slice", | |
| ] | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 760px; | |
| } | |
| #button{ | |
| align-self: stretch; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(f""" | |
| # FLUX.1 [dev] with CFG (and negative prompts) | |
| """) | |
| #with gr.Row(): | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| ) | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Distilled Guidance", | |
| minimum=1.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=1.0, #Replace with defaults that work for your model | |
| ) | |
| true_guidance = gr.Slider( | |
| label="True CFG", | |
| minimum=1.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=5.0, #Replace with defaults that work for your model | |
| ) | |
| run_button = gr.Button("Run", scale=0, elem_id="button") | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| lora_model = gr.Textbox(label="LoRA model id", placeholder="multimodalart/flux-tarot-v1 ") | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, #Replace with defaults that work for your model | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, #Replace with defaults that work for your model | |
| ) | |
| with gr.Row(): | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=28, #Replace with defaults that work for your model | |
| ) | |
| gr.Examples( | |
| examples = examples, | |
| inputs = [prompt] | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit, negative_prompt.submit], | |
| fn = infer, | |
| inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, true_guidance, num_inference_steps, lora_model], | |
| outputs = [result, seed] | |
| ) | |
| demo.queue().launch(ssr_mode = False) |