|
from pydoc import describe |
|
import gradio as gr |
|
import torch |
|
from omegaconf import OmegaConf |
|
import sys |
|
sys.path.append(".") |
|
sys.path.append('./taming-transformers') |
|
sys.path.append('./latent-diffusion') |
|
from taming.models import vqgan |
|
from ldm.util import instantiate_from_config |
|
|
|
torch.hub.download_url_to_file('https://ommer-lab.com/files/latent-diffusion/nitro/txt2img-f8-large/model.ckpt','txt2img-f8-large.ckpt') |
|
|
|
|
|
import argparse, os, sys, glob |
|
import numpy as np |
|
from PIL import Image |
|
from einops import rearrange |
|
from torchvision.utils import make_grid |
|
import transformers |
|
import gc |
|
from ldm.util import instantiate_from_config |
|
from ldm.models.diffusion.ddim import DDIMSampler |
|
from ldm.models.diffusion.plms import PLMSSampler |
|
|
|
|
|
def load_model_from_config(config, ckpt, verbose=False): |
|
print(f"Loading model from {ckpt}") |
|
pl_sd = torch.load(ckpt, map_location="cuda") |
|
sd = pl_sd["state_dict"] |
|
model = instantiate_from_config(config.model) |
|
m, u = model.load_state_dict(sd, strict=False) |
|
if len(m) > 0 and verbose: |
|
print("missing keys:") |
|
print(m) |
|
if len(u) > 0 and verbose: |
|
print("unexpected keys:") |
|
print(u) |
|
|
|
model = model.half().cuda() |
|
model.eval() |
|
return model |
|
|
|
config = OmegaConf.load("latent-diffusion/configs/latent-diffusion/txt2img-1p4B-eval.yaml") |
|
model = load_model_from_config(config, f"txt2img-f8-large.ckpt") |
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
model = model.to(device) |
|
|
|
def run(prompt, steps, width, height, images, scale): |
|
if images == 6: |
|
images = 3 |
|
n_iter = 2 |
|
else: |
|
n_iter = 1 |
|
opt = argparse.Namespace( |
|
prompt = prompt, |
|
outdir='latent-diffusion/outputs', |
|
ddim_steps = int(steps), |
|
ddim_eta = 0, |
|
n_iter = n_iter, |
|
W=int(width), |
|
H=int(height), |
|
n_samples=int(images), |
|
scale=scale, |
|
plms=True |
|
) |
|
if opt.plms: |
|
opt.ddim_eta = 0 |
|
sampler = PLMSSampler(model) |
|
else: |
|
sampler = DDIMSampler(model) |
|
|
|
os.makedirs(opt.outdir, exist_ok=True) |
|
outpath = opt.outdir |
|
|
|
prompt = opt.prompt |
|
|
|
|
|
sample_path = os.path.join(outpath, "samples") |
|
os.makedirs(sample_path, exist_ok=True) |
|
base_count = len(os.listdir(sample_path)) |
|
|
|
all_samples=list() |
|
all_samples_images=list() |
|
with torch.no_grad(): |
|
with torch.cuda.amp.autocast(): |
|
with model.ema_scope(): |
|
uc = None |
|
if opt.scale > 0: |
|
uc = model.get_learned_conditioning(opt.n_samples * [""]) |
|
for n in range(opt.n_iter): |
|
c = model.get_learned_conditioning(opt.n_samples * [prompt]) |
|
shape = [4, opt.H//8, opt.W//8] |
|
samples_ddim, _ = sampler.sample(S=opt.ddim_steps, |
|
conditioning=c, |
|
batch_size=opt.n_samples, |
|
shape=shape, |
|
verbose=False, |
|
unconditional_guidance_scale=opt.scale, |
|
unconditional_conditioning=uc, |
|
eta=opt.ddim_eta) |
|
|
|
x_samples_ddim = model.decode_first_stage(samples_ddim) |
|
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) |
|
|
|
for x_sample in x_samples_ddim: |
|
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') |
|
all_samples_images.append(Image.fromarray(x_sample.astype(np.uint8))) |
|
|
|
base_count += 1 |
|
all_samples.append(x_samples_ddim) |
|
|
|
|
|
|
|
grid = torch.stack(all_samples, 0) |
|
grid = rearrange(grid, 'n b c h w -> (n b) c h w') |
|
grid = make_grid(grid, nrow=2) |
|
|
|
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy() |
|
|
|
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'{prompt.replace(" ", "-")}.png')) |
|
return(Image.fromarray(grid.astype(np.uint8)),all_samples_images) |
|
|
|
image = gr.outputs.Image(type="pil", label="Your result") |
|
css = ".output-image{height: 528px !important} .output-carousel .output-image{height:272px !important}" |
|
iface = gr.Interface(fn=run, inputs=[ |
|
gr.inputs.Textbox(label="Prompt - try adding increments to your prompt such as 'oil on canvas', 'a painting', 'a book cover'",default="The drawing of a dog wearing a funny hat"), |
|
gr.inputs.Slider(label="Steps - more steps can increase quality but will take longer to generate",default=45,maximum=50,minimum=1,step=1), |
|
gr.inputs.Radio(label="Width", choices=[32,64,128,256],default=256), |
|
gr.inputs.Radio(label="Height", choices=[32,64,128,256],default=256), |
|
gr.inputs.Slider(label="Images - How many images you wish to generate", default=2, step=1, minimum=1, maximum=4), |
|
gr.inputs.Slider(label="Diversity scale - How different from one another you wish the images to be",default=5.0, minimum=1.0, maximum=15.0), |
|
|
|
], |
|
outputs=[image,gr.outputs.Carousel(label="Individual images",components=["image"])], |
|
css=css, |
|
title="Generate images from text with Latent Diffusion LAION-400M", |
|
description="<div>By typing a text and clicking submit you can generate images based on this text. This is a text-to-image model created by CompVis, trained on the LAION-400M dataset.<br>For more multimodal ai art check us out <a style='color: rgb(245, 158, 11);font-weight:bold' href='https://twitter.com/multimodalart' target='_blank'>@multimodalart</a></div>") |
|
iface.launch(enable_queue=True) |