wan-2-2-first-last-frame / optimization.py
apolinario's picture
Swap Comfy to Diffusers
d3b1ec0
"""
"""
from typing import Any
from typing import Callable
from typing import ParamSpec
import spaces
import torch
from torch.utils._pytree import tree_map_only
from torchao.quantization import quantize_
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
from torchao.quantization import Int8WeightOnlyConfig
from optimization_utils import capture_component_call
from optimization_utils import aoti_compile
from optimization_utils import drain_module_parameters
P = ParamSpec('P')
# --- CORRECTED DYNAMIC SHAPING ---
# VAE temporal scale factor is 1, latent_frames = num_frames. Range is [8, 81].
LATENT_FRAMES_DIM = torch.export.Dim('num_latent_frames', min=8, max=81)
# The transformer has a patch_size of (1, 2, 2), which means the input latent height and width
# are effectively divided by 2. This creates constraints that fail if the symbolic tracer
# assumes odd numbers are possible.
#
# To solve this, we define the dynamic dimension for the *patched* (i.e., post-division) size,
# and then express the input shape as 2 * this dimension. This mathematically guarantees
# to the compiler that the input latent dimensions are always even, satisfying the constraints.
# App range for pixel dimensions: [480, 832]. VAE scale factor is 8.
# Latent dimension range: [480/8, 832/8] = [60, 104].
# Patched latent dimension range: [60/2, 104/2] = [30, 52].
LATENT_PATCHED_HEIGHT_DIM = torch.export.Dim('latent_patched_height', min=30, max=52)
LATENT_PATCHED_WIDTH_DIM = torch.export.Dim('latent_patched_width', min=30, max=52)
# Now, we define the dynamic shapes for the transformer's `hidden_states` input,
# which has the shape (batch_size, channels, num_frames, height, width).
TRANSFORMER_DYNAMIC_SHAPES = {
'hidden_states': {
2: LATENT_FRAMES_DIM,
3: 2 * LATENT_PATCHED_HEIGHT_DIM, # Guarantees even height
4: 2 * LATENT_PATCHED_WIDTH_DIM, # Guarantees even width
},
}
# --- END OF CORRECTION ---
INDUCTOR_CONFIGS = {
'conv_1x1_as_mm': True,
'epilogue_fusion': False,
'coordinate_descent_tuning': True,
'coordinate_descent_check_all_directions': True,
'max_autotune': True,
'triton.cudagraphs': True,
}
def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
@spaces.GPU(duration=1500)
def compile_transformer():
# This LoRA fusion part remains the same
pipeline.load_lora_weights(
"Kijai/WanVideo_comfy",
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
adapter_name="lightx2v"
)
kwargs_lora = {}
kwargs_lora["load_into_transformer_2"] = True
pipeline.load_lora_weights(
"Kijai/WanVideo_comfy",
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
adapter_name="lightx2v_2", **kwargs_lora
)
pipeline.set_adapters(["lightx2v", "lightx2v_2"], adapter_weights=[1., 1.])
pipeline.fuse_lora(adapter_names=["lightx2v"], lora_scale=3., components=["transformer"])
pipeline.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1., components=["transformer_2"])
pipeline.unload_lora_weights()
# Capture a single call to get the args/kwargs structure
with capture_component_call(pipeline, 'transformer') as call:
pipeline(*args, **kwargs)
dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs)
dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
# Quantization remains the same
quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
quantize_(pipeline.transformer_2, Float8DynamicActivationFloat8WeightConfig())
# --- SIMPLIFIED COMPILATION ---
exported_1 = torch.export.export(
mod=pipeline.transformer,
args=call.args,
kwargs=call.kwargs,
dynamic_shapes=dynamic_shapes,
)
exported_2 = torch.export.export(
mod=pipeline.transformer_2,
args=call.args,
kwargs=call.kwargs,
dynamic_shapes=dynamic_shapes,
)
compiled_1 = aoti_compile(exported_1, INDUCTOR_CONFIGS)
compiled_2 = aoti_compile(exported_2, INDUCTOR_CONFIGS)
# Return the two compiled models
return compiled_1, compiled_2
# Quantize text encoder (same as before)
quantize_(pipeline.text_encoder, Int8WeightOnlyConfig())
# Get the two dynamically-shaped compiled models
compiled_transformer_1, compiled_transformer_2 = compile_transformer()
# --- SIMPLIFIED ASSIGNMENT ---
pipeline.transformer.forward = compiled_transformer_1
drain_module_parameters(pipeline.transformer)
pipeline.transformer_2.forward = compiled_transformer_2
drain_module_parameters(pipeline.transformer_2)